
Flake8	– a	tool	for	PEP8 style	guide	enforcement

python3 -m pip install flake8
flake8 project_name

(forge_dev) mo-2122b:forge mo$ flake8 ../forge
../forge/build/lib/mdf_forge/toolbox.py:17:18: E261 at least two spaces before inline comment
../forge/build/lib/mdf_forge/toolbox.py:17:19: E262 inline comment should start with '# ’
../forge/build/lib/mdf_forge/toolbox.py:34:1: E266 too many leading '#' for block comment
../forge/build/lib/mdf_forge/toolbox.py:137:92: W291 trailing whitespace
../forge/build/lib/mdf_forge/toolbox.py:240:33: E128 continuation line under-indented for visual indent
../forge/build/lib/mdf_forge/toolbox.py:254:1: E303 too many blank lines (3)
../forge/build/lib/mdf_forge/toolbox.py:258:1: E302 expected 2 blank lines, found 3
../forge/build/lib/mdf_forge/toolbox.py:281:80: E251 unexpected spaces around keyword / parameter equals
../forge/build/lib/mdf_forge/toolbox.py:329:1: E266 too many leading '#' for block comment
../forge/build/lib/mdf_forge/toolbox.py:493:46: E712 comparison to False should be 'if cond is False:' or 'if not cond:’
../forge/build/lib/mdf_forge/toolbox.py:497:10: E261 at least two spaces before inline comment
../forge/build/lib/mdf_forge/toolbox.py:501:9: E265 block comment should start with '# ’
../forge/build/lib/mdf_forge/toolbox.py:505:51: E712 comparison to False should be 'if cond is False:' or 'if not cond:’
../forge/build/lib/mdf_forge/toolbox.py:690:1: W391 blank line at end of file
../forge/mdf_forge/forge.py:425:56: E251 unexpected spaces around keyword / parameter equals
../forge/mdf_forge/forge.py:432:101: E501 line too long (108 > 100 characters)
.........

http://flake8.pycqa.org/en/latest/

install on a particular version of Python

Indentation, line-length & code wrapping
• Always use 4 spaces for indentation (don’t use tabs)
• Write in ASCII in Python 2 and UTF-8 in Python 3
• Max line-length: 72 characters
• Always indent wrapped code for readablility

Imports
• Don’t use wildcards
• Try to use absolute imports over relative ones
• When using relative imports, be explicit (with .)
• Don’t import multiple packages per line

Whitespace and newlines
• 2 blank lines before top-level function and class

definitions
• 1 blank line before class method definitions
• Use blank lines in functions sparingly
• Avoid extraneous whitespace
• Don’t use whitespace to line up assignment

operators (=, :)
• Spaces around = for assignment
• No spaces around = for default parameter values
• Spaces around mathematical operators, but group

them sensibly
• Multiple statements on the same line are

discouraged

Comments
• Keep comments up to date - incorrect comments are

worse than no comments

Comments (cont.)
• Write in whole sentences
• Try to write in “Strunk & White” English
• Use inline comments sparingly & avoid obvious

comments
• Each line of block comments should start with “# “
• Paragraphs in block comments should be separated by a

line with a single “#”
• All public functions, classes and methods should have

docstrings
• Docstrings should start and end with ""”
• Docstring one-liners can be all on the same line
• In docstrings, list each argument on a separate line
• Docstrings should have a blank line before the final """

Naming conventions
• Class names in CapWords
• Method, function and variables names in

lowercase_with_underscores
• Private methods and properties start with

__double_underscore
• “Protected” methods and properties start with

_single_underscore
• If you need to use a reserved word, add a _ to the end

(e.g. class_)
• Always use self for the first argument to instance

methods
• Always use cls for the first argument to class methods
• Never declare functions using lambda (f = lambda x:

2*x)

def test_forge_match_years(capfd):
#	One	year	of	data/results
f1	=	forge.Forge()
years1	=	["2015"]
res1	=	f1.match_years(years1).search(limit=10)
assert	res1	!=	[]
assert	check_field(res1,	"mdf.year",	2015)	==	0

#	Multiple	years
f2	=	forge.Forge()
years2	=	[2015,	"2011"]
#	match_all=False	(2011	OR	2015)
res2	=	f2.match_years(years2,	inclusive=False).search()
assert	check_field(res2,	"mdf.year",	2011)	==	2

#	Wrong	input
f3	=	forge.Forge()
years3	=	["20x5"]
res3	=	f3.match_years(years3,	inclusive=False).search()	#	noqa
out,	err	=	capfd.readouterr()
msg_err =	"Year	is	not	a	valid	input"	in	out
assert	msg_err ==	True	#	noqa

../forge/tests/test_forge.py:557:5:	F841	local	variable	'res3'	is	assigned	to	but	never	used

../forge/tests/test_forge.py:560:20:	E712	comparison	to	True	should	be	'if	cond is	True:'	or	'if	cond:'

I’ve used few `noqa` comments ignoring errors in tests.
1) It wants me to use `is` to compare singletons. So the

statement `assert x == True` should be written `assert x is
True` instead, in accordance with PEP8.

2) `res3` is indeed not used but I think it is needed for code
style compatibility.

Options

--count Print the total number of errors.
--diff Use the unified diff provided on standard in to only check the modified files and report errors

included in the diff.
--exclude=<patterns> Provide a comma-separated list of glob patterns to exclude from checks.
--filename=<patterns> Provide a comma-separate list of glob patterns to include for checks.
--format=<format> Select the formatter used to display errors to the user.
--hang-closing Toggle whether pycode style should enforce matching the indentation of the opening

bracket’s line.
--ignore=<errors> Specify a list of codes to ignore. The list is expected to be comma-separated,
--max-line-length=<n> Set the maximum length that any line (with some exceptions) may be.

Exceptions include lines that are either strings or comments which are entirely URLs.
This defaults to: 79

--select=<errors> Specify the list of error codes you wish Flake8 to report.
--disable-noqa Report all errors, even if it is on the same line as a # NOQA comment. # NOQA can be used

to silence messages on specific lines. Sometimes, users will want to see what errors are being
silenced without editing the file. This option allows you to see all the warnings, etc. reported.

--show-source Print the source code generating the error/warning in question.
--statistics Count the number of occurrences of each error/warning code and print a report.
--exit-zero Force Flake8 to use the exit status code 0 even if there are errors.
--jobs=<n> Specify the number of subprocesses that Flake8 will use to run checks in parallel.
--output-file=<path> Redirect all output to the specified file.
--tee Also print output to stdout if output-file has been configured.
--config=<config> Provide a path to a config file that will be the only config file read and used.

This will cause Flake8 to ignore all other config files that exist.
--isolated Ignore any config files and use Flake8 as if there were no config files found.
--builtins=<builtins> Provide a custom list of builtin functions, objects, names, etc.
--doctests Enable PyFlakes syntax checking of doctests in docstrings.
--benchmark Collect and print benchmarks for this run of Flake8.

Error / Violation Codes
../forge/tests/test_forge.py:557:5:	F841 local	variable	'res3'	is	assigned	to	but	never	used
../forge/tests/test_forge.py:560:20:	E712 comparison	to	True	should	be	'if	cond is	True:'	or	'if	cond:'

Ignoring Violations (here codes starting with E1, etc.)
flake8 --ignore=E1,E23,W503 path/to/files/

List	all	of	the	errors	we	want	to	ignore	in	the	code:							 # noqa: E731,E123

Using Plugins For Fun and Profit

Flake8 is useful on its own but a lot of its popularity is due to its extensibility. Our
community has developed plugins that augment Flake8’s behavior. The developers of
these plugins often have some style they wish to enforce.

Python Enhancement Proposals (PEP) 8 compliance
Style Guide for Python Code

“A foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and
divines. With consistency a great soul has simply nothing to do. He may as well concern himself with his
shadow on the wall. Speak what you think now in hard words, and to-morrow speak what to-morrow thinks in
hard words again, though it contradict every thing you said to-day. — 'Ah, so you shall be sure to be
misunderstood.' — Is it so bad, then, to be misunderstood? Pythagoras was misunderstood, and Socrates, and
Jesus, and Luther, and Copernicus, and Galileo, and Newton, and every pure and wise spirit that ever took flesh.
To be great is to be misunderstood.”

Ralph Waldo Emerson, Self-Reliance

The guidelines are intended to improve the readability of code and make it consistent
across the wide spectrum of Python code.

However, know when to be inconsistent -- sometimes style guide recommendations
just aren't applicable. When in doubt, use your best judgment.

Guido van Rossum

Indentation, line-length & code wrapping
• Always use 4 spaces for indentation (don’t use tabs)
• Write in ASCII in Python 2 and UTF-8 in Python 3
• Max line-length: 72 characters
• Always indent wrapped code for readablility

Imports
• Don’t use wildcards
• Try to use absolute imports over relative ones
• When using relative imports, be explicit (with .)
• Don’t import multiple packages per line

Whitespace and newlines
• 2 blank lines before top-level function and class

definitions
• 1 blank line before class method definitions
• Use blank lines in functions sparingly
• Avoid extraneous whitespace
• Don’t use whitespace to line up assignment

operators (=, :)
• Spaces around = for assignment
• No spaces around = for default parameter values
• Spaces around mathematical operators, but group

them sensibly
• Multiple statements on the same line are

discouraged

Comments
• Keep comments up to date - incorrect comments are

worse than no comments

Comments (cont.)
• Write in whole sentences
• Try to write in “Strunk & White” English
• Use inline comments sparingly & avoid obvious

comments
• Each line of block comments should start with “# “
• Paragraphs in block comments should be separated by a

line with a single “#”
• All public functions, classes and methods should have

docstrings
• Docstrings should start and end with ""”
• Docstring one-liners can be all on the same line
• In docstrings, list each argument on a separate line
• Docstrings should have a blank line before the final """

Naming conventions
• Class names in CapWords
• Method, function and variables names in

lowercase_with_underscores
• Private methods and properties start with

__double_underscore
• “Protected” methods and properties start with

_single_underscore
• If you need to use a reserved word, add a _ to the end

(e.g. class_)
• Always use self for the first argument to instance

methods
• Always use cls for the first argument to class methods
• Never declare functions using lambda (f = lambda x:

2*x)

