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Foreword

Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems 
depends on the availability of sound water-resources data and information to develop effective, 
science-based policies. Effective management of water resources also brings more certainty and 
efficiency to important economic sectors. Taken together, these actions lead to immediate and 
long-term economic, social, and environmental benefits that make a difference to the lives of 
the almost 400 million people projected to live in the United States by 2050. (http://water.usgs.
gov/nawqa/applications/).

In 1991, Congress established the National Water-Quality Assessment (NAWQA) to address 
where, when, why, and how the Nation’s water quality has changed, or is likely to change in 
the future, in response to human activities and natural factors. Since then, NAWQA has been 
a leading source of scientific data and knowledge used by national, regional, State, and local 
agencies to develop science-based policies and management strategies to improve and pro-
tect water resources used for drinking water, recreation, irrigation, energy development, and 
ecosystem needs. Plans for the third decade of NAWQA (2013–23) address priority water-quality 
issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee 
on Water Information, and the National Research Council as the Nation faces increasing chal-
lenges related to population growth, increasing needs for clean water, and changing land-use 
and weather patterns.

Federal, State, and local agencies have invested billions of dollars to reduce the amount of 
pollution entering rivers and streams that millions of Americans rely on for drinking water, 
recreation, and irrigation. Tracking changes in the quality of these waterways over multiple 
decades is crucial for evaluating the effectiveness of pollution control efforts and protecting the 
Nation’s water resources into the future. This report combines monitoring data collected by 74 
organizations at almost 1,400 sites to provide a nationwide look at changes in the quality of our 
rivers and streams from 1972 to 2012—the 40 years since passage of the Clean Water Act. All 
NAWQA reports are available online (https://water.usgs.gov/nawqa/bib/).

We hope this publication will provide you with insights and information to meet your water 
resource needs and will foster increased citizen awareness and involvement in the protection 
and restoration of our Nation’s waters. The information in this report is intended primarily for 
those interested or involved in resource management and protection, conservation, regulation, 
and policymaking at the regional and national level.

 Dr. Gary L. Rowe 
Program Coordinator, National Water Quality Program 

U.S. Geological Survey

http://water.usgs.gov/nawqa/applications/
http://water.usgs.gov/nawqa/applications/
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Water-Quality Trends in the Nation’s Rivers and Streams, 
1972–2012—Data Preparation, Statistical Methods, 
and Trend Results

By Gretchen P. Oelsner, Lori A. Sprague, Jennifer C. Murphy, Robert E. Zuellig, Henry M. Johnson, 
Karen R. Ryberg, James A. Falcone, Edward G. Stets, Aldo V. Vecchia, Melissa L. Riskin, Laura A. De Cicco, 
Taylor J. Mills, and William H. Farmer

Abstract
Since passage of the Clean Water Act in 1972, Federal, 

State, and local governments have invested billions of dollars 
to reduce pollution entering rivers and streams. To understand 
the return on these investments and to effectively manage and 
protect the Nation’s water resources in the future, we need to 
know how and why water quality has been changing over time. 
As part of the National Water-Quality Assessment Project, of 
the U.S. Geological Survey’s National Water-Quality Program, 
data from the U.S. Geological Survey, along with multiple other 
Federal, State, Tribal, regional, and local agencies, have been 
used to support the most comprehensive assessment conducted 
to date of surface-water-quality trends in the United States. This 
report documents the methods used to determine trends in water 
quality and ecology because these methods are vital to ensuring 
the quality of the results. Specific objectives are to document 
(1) the data compilation and processing steps used to identify 
river and stream sites throughout the Nation suitable for water-
quality, pesticide, and ecology trend analysis, (2) the statistical 
methods used to determine trends in target parameters, (3) 
considerations for water-quality, pesticide, and ecology data 
and streamflow data when modeling trends, (4) sensitivity 
analyses for selecting data and interpreting trend results with 
the Weighted Regressions on Time, Discharge, and Season 
method, and (5) the final trend results at each site. The scope 
of this study includes trends in water-quality concentrations 
and loads (nutrient, sediment, major ion, salinity, and carbon), 
pesticide concentrations and loads, and metrics for aquatic 
ecology (fish, invertebrates, and algae) for four time periods: 
(1) 1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 
2002–12. In total, nearly 12,000 trends in concentration, load, 
and ecology metrics were evaluated in this study; there were 
11,893 combinations of sites, parameters, and trend periods. 
The final trend results are presented with examples of how to 
interpret the results from each trend model. Interpretation of the 
trend results, such as causal analysis, is not included.

Introduction
The Nation’s rivers and streams are a valuable resource, 

providing drinking water for a growing population, irrigation 
for crops, habitat for aquatic life, and many recreational 
opportunities; however, pollution from urban and agricultural 
areas poses a continuing threat to water quality. Since passage 
of the Clean Water Act in 1972, Federal, State, Tribal, and 
local governments have invested billions of dollars to reduce 
pollution entering rivers and streams (U.S. Environmental 
Protection Agency, 2010; U.S. Department of Agriculture, 
2014), yet recently, the U.S. Environmental Protection 
Agency (EPA) reported that nearly half of the Nation’s 
streams have poor biological quality (U.S. Environmental 
Protection Agency, 2016). To understand the return on these 
investments and to more effectively manage and protect the 
Nation’s water resources in the future, we need to know how 
and why water quality has been changing over time. 

In 1991, the U.S. Geological Survey (USGS) began a 
study of more than 50 major river basins across the Nation 
as part of the National Water-Quality Assessment (NAWQA) 
Project of the USGS’s National Water-Quality Program. A 
major goal of NAWQA is to determine how water quality 
changes over time. To support that goal, long-term consistent 
and comparable monitoring has been conducted on rivers and 
streams throughout the Nation. Other USGS projects, as well 
as projects conducted by many other Federal, State, Tribal, 
regional, and local agencies have collected long-term water-
quality data to support their own assessments of changing 
water-quality conditions. For the first time, in an effort meant 
to be as inclusive as possible, data from multiple sources have 
been aggregated, screened, standardized, and used to support 
a comprehensive assessment of surface-water-quality trends 
in the United States. Collectively, these trend results will be 
used to provide insight into how natural variation and human 
activities have contributed to water-quality changes over time 
in the Nation’s rivers and streams. 
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Objectives and Scope
The objectives of this report are to document (1) the 

data compilation and processing steps used to identify river 
and stream sites throughout the Nation suitable for water-
quality, pesticide, and ecology trend analysis, (2) the statistical 
methods used to determine trends in target parameters, (3) 
considerations for water-quality, pesticide, and ecology data 
and streamflow data when modeling trends, (4) sensitivity 
analyses for selecting data and interpreting trend results 
with the Weighted Regressions on Time, Discharge, and 
Season method, and (5) a brief summary of the trend results 
presented as the presence or absence of a significant trend 
at each site for each parameter and trend period for which 
data are available. This report is intended to be used as a 
reference document for the multiple aspects of trend analysis 
described in the objectives above. The report is organized so 
that the data processing steps are detailed for each parameter 
group because most readers will not be interested in all of 
the parameters included in this study. The scope of this study 
includes trends in water-quality concentrations and loads 
(nutrient, sediment, major ion, salinity, and carbon), pesticide 
concentrations and loads, and metrics for aquatic ecology 
(fish, invertebrates, and algae) for four time periods: (1) 
1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 2002–12. 
Pesticide trends were determined based on calendar year, and 
all other trends were determined based on water year, which 
is defined as the 12-month period beginning October 1 for 
any given year through September 30 of the following year 
and is designated by the calendar year in which it ends (see 
“Trend Analysis Methods” section). This report documents 
the methods used to determine trends in water quality 
and ecology because they are vital to ensuring the quality 
and interpretability of the results. The final trend results 
are presented, along with an example of how to interpret 
the results from each trend model. An overall or in-depth 
interpretation of the trend results, such as causal analysis, is 
not included in this report.
	 Five datasets (including all trend model inputs and 
results) were used to support this study:
1.	 De Cicco, L.A., Sprague, L.A., Murphy, J.C., Riskin, 

M.L., Falcone, J.A., Stets, E.G., Oelsner, G.P., and 
Johnson, H.M., 2017, Water-quality and streamflow 
datasets used in the Weighted Regressions on Time, 
Discharge, and Season (WRTDS) models to determine 
trends in the Nation’s rivers and streams, 1972–2012: 
U.S. Geological Survey data release, http://dx.doi.
org/10.5066/F7KW5D4H.

2.	 Ryberg, K.R., Murphy, J.C., Falcone, J.A., Riskin, 
M.L., Wieben, C.M., and Vecchia, A.V., 2017, Pesticide 
concentration and streamflow datasets used to evaluate 
pesticide trends in the Nation’s rivers and streams, 1992–
2012: U.S. Geological Survey data release, http://dx.doi.
org/10.5066/F7BC3WPC.

3.	 Zuellig, R.E. and Riskin, M.L., 2017, Ecological 
community datasets used to evaluate the presence of 
trends in ecological communities in selected rivers 
and streams across the United States, 1992–2012: U.S. 
Geological Survey data release, http://dx.doi.org/10.5066/
F7G44ND3.

4.	 Farmer, W.H., Murphy, J.C., Riskin, M.L., Ryberg, K.R., 
and Zuellig, R.E., 2017, Daily streamflow datasets used 
to analyze trends in streamflow at sites also analyzed for 
trends in water quality and ecological condition in the 
Nation’s rivers and streams: U.S. Geological Survey data 
release, http://www.dx.doi.org/10.5066/F7D798JN.

5.	 Mills, T.J., Sprague, L.A., Murphy, J.C., Riskin, M.L., 
Falcone, J.A., Stets, E.G., Oelsner, G.P, and Johnson, 
H.M., 2017, Water-quality and streamflow datasets used 
in Seasonal Kendall trend tests for the Nation’s rivers and 
streams, 1972–2012: U.S. Geological Survey data release, 
http://dx.doi.org/10.5066/F7QN64VT. 

Methods

Water-Quality, Pesticide, and Ecology 
Data Compilation

Water-quality monitoring and some aquatic-ecology data 
(invertebrates) were compiled from multiple sources for this 
study and included ambient monitoring data that were readily 
accessible from Federal, State, regional, and local government 
agencies and nongovernmental organizations. The primary 
sources of data were the USGS National Water Information 
System (NWIS) database, the USGS Aquatic Bioassessment 
(BioData) database, the EPA STOrage and RETrieval Data 
Warehouse, Water Quality Exchange (STORET) database, 
and additional repositories for monitoring data that are not 
included in STORET. STORET serves water-quality data from 
multiple Federal, State, regional, and local organizations; 
NWIS primarily serves data from USGS but also contains a 
small amount of data collected by other organizations. All 
available water-quality data for nutrient, sediment, major ion, 
salinity, carbon, and associated physical parameters from 
the United States and Puerto Rico for all possible dates were 
retrieved from NWIS (U.S. Geological Survey, 2016) in May 
2013 and from STORET (https://www.epa.gov/waterdata/
storage-and-retrieval-and-water-quality-exchange) in October 
2013. Only public data from NWIS, those with a Data Quality 
Indicator code of A (Historical Data), S (Provisional), and R 
(Reviewed and approved), were used in this study. Replicate 
samples collected by the NAWQA Project were retrieved in 
2016 as described in the “Replicate Evaluation” section of this 
report. When the data were retrieved in 2013, some water-
quality records did not extend into 2012. To ensure that recent 

http://dx.doi.org/10.5066/F7KW5D4H
http://dx.doi.org/10.5066/F7KW5D4H
http://dx.doi.org/10.5066/F7BC3WPC
http://dx.doi.org/10.5066/F7BC3WPC
http://dx.doi.org/10.5066/F7G44ND3
http://dx.doi.org/10.5066/F7G44ND3
http://www.dx.doi.org/10.5066/F7D798JN
http://dx.doi.org/10.5066/F7QN64VT
https://www.epa.gov/waterdata/storage-and-retrieval-and-water-quality-exchange
https://www.epa.gov/waterdata/storage-and-retrieval-and-water-quality-exchange
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data were included, data from NWIS and STORET collected 
from 2008 to 2014 were retrieved from the Water Quality 
Portal (WQP, http://www.waterqualitydata.us), a public 
clearinghouse for both NWIS and STORET data, in three 
batches between January and March 2015. The additional 
data from the WQP were added to the original NWIS and 
STORET data. Duplicate samples that resulted from this 
addition were removed according to the procedures described 
in the “Duplicate Samples” section of this report. Publicly-
available fish, invertebrate, and algae data were downloaded 
in December 2013 from BioData (MacCoy, 2011). Between 
2011 and 2015, Federal, State, and local agencies in each of 
the 48 contiguous States were contacted to acquire suitable 
water-quality data that were available in electronic format 
and not in NWIS or STORET. Regional groups, such as the 
Chesapeake Bay Program (CBP), were also contacted to 
request suitable water-quality monitoring data. The acquired 
data were provided in multiple formats and were processed 
into a standardized format with common data elements 
and terminologies for site types, parameters, fractions, and 
reporting units. If data from the same agency were received 
from multiple sources (directly from an agency as well as 
through STORET), then those data were combined under the 
same site; however, if two different agencies were collecting 
data at the same location, the data were not automatically 
combined. Data from multiple agencies were not combined 
until after harmonization and only in the instances described in 
the “Merging Colocated or Neighboring Water-Quality Sites” 
sections of this report. 

More than 185 million water-quality and ecology records 
from approximately 480,000 sites and over 600 agencies 
were initially evaluated for this trend study. A list of all of 
the agencies that supplied data for the data compilation effort 
including the 74 agencies that supplied data used in this trend 
study is provided in table 1. Overall, approximately 60 percent 
of the final records came from NWIS, BioData, and STORET 
databases. The 73 non-USGS organizations across the United 
States included in this trend study were composed of 3 Federal 
agencies; 2 regional (multiple State) organizations; 40 State 
water, natural resources or environmental protection agencies; 
1 tribal organization; 19 county or subcounty organizations; 3 
academic organizations; 2 non-governmental organizations; 2 
volunteer organizations; and 1 private organization (table 1). 
Approximately one-half of the data used in this trend study 
came from State water, natural resources, or environmental 
protection agencies; one-third of the data came from 
Federal agencies.

Streamflow Data Compilation

For many rivers, water quality and streamflow are 
correlated, and properly accounting for this relation during 
trend analyses allows for a better determination of general 
changes in water quality over time (Helsel and Hirsch, 2002). 
This is important for parameters that are strongly related to 

streamflow and sites where streamflow is highly variable; 
furthermore, if trends in load are of interest, streamflow 
data are essential to calculate parameter load (mass), which 
is the product of water-quality concentration (a mass per 
volume) and an associated streamflow rate (volume per 
time). Streamflow data were used in this analyses as an 
explanatory variable in each of three trend methods and to 
calculate water-quality loads. The USGS streamflow gages 
(henceforth, referred to as “streamgages”) were the primary 
source of streamflow data. Most daily mean streamflow values 
for USGS streamgages were retrieved from NWIS (http://
dx.doi.org/10.5066/F7P55KJN) using the freely-available 
statistical software R (R Development Core Team, 2014) 
and the function “importDVs” available in the R package 
“waterData” (Ryberg and Vecchia, 2012). Daily mean 
streamflow values for four USGS streamgages were not 
available or were incomplete in the public NWIS database 
because of database coding issues and were acquired directly 
from the USGS Water Science Centers that collected the data. 
The streamflow records for these four sites were all approved 
for public distribution. Daily mean streamflow values 
for 17 non-USGS streamgages were retrieved from public 
databases hosted by the source agencies when available. 
Recent streamflow data (2011–13) for one of these non-
USGS streamgages were not publically available, and this 
information was retrieved directly from the source agency. 
Streamflow data from 1,134 unique streamgages were used for 
this study and included data from 1,117 USGS streamgages 
and 17 non-USGS streamgages (appendix 1, tables 1–1 
through 1–5). Streamgages used in the nutrient, sediment, 
major ion, salinity, and carbon trend anlalyses are listed in 
table 1–1; streamgages used in the pesticide trend analysis are 
listed in table 1–2; and streamgages used in the ecology trend 
analysis are listed in tables 1–3, 1–4, and 1–5.

Streamgage Matching

Because streamflow data are required for water-quality, 
pesticide, and ecology trend analysis, sites with water-
quality, pesticide, and (or) ecology data had to be assessed to 
determine whether there was a suitable nearby streamgage. 
All water-quality sites with at least 3 consecutive years of 
quarterly samples for any parameter were assessed for their 
proximity to a suitable streamgage as well as all pesticide and 
ecology sites. The process of pairing water-quality sites and 
streamgages is referred to as “streamgage matching” and the 
generalized process is presented in figure 1.

Because of the large scale of this effort, there are 
numerous potential sources of error in the site location data, 
the NHDPlus dataset, and ancillary datasets used to generate 
site-streamgage combinations. Reasonable efforts were made 
to identify and correct errors; nevertheless, a small percentage 
of incorrect site-streamgage combinations may exist in the 
final combinations because of undetected issues from one or 
more datasets used in the streamgage-matching process.

http://www.waterqualitydata.us/
http://dx.doi.org/10.5066/F7P55KJN
http://dx.doi.org/10.5066/F7P55KJN
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.

[NGO, non-governmental organization; --, not applicable]

Table 1. Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued 

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Alabama Department of Environmental Management AL DEM Alabama State Yes
Alabama Water Watch Association AL AWWA Alabama Volunteer No
Poarch Band of Creek Indians AL TPBCI Alabama Tribe No
Alaska Department of Environmental Conservation AK DEC Alaska State No
Alaska Soil and Water Conservation District AK SWCD Alaska State No
Kenai Watershed Forum AK TKWF Alaska Tribe No
Salt Chuck Mine AK SCM Alaska County or subcounty No
AK-Chin Indian Community AZ TAKIC Arizona Tribe No
Arizona Department of Environmental Quality AZ DEQ Arizona State No
Arizona Southwest Watershed Research Center AZ SWRC Arizona Federal No
Cocopah Indian Tribe Environmental Protection Office AZ TCOCOPAH Arizona Tribe No
Fort McDowell Yavapai Nation AZ TFMYN Arizona Tribe No
Hopi Tribe Water Resources Program AR HOPI Arizona Tribe No
Hualapai Tribe AZ THUALAPAI Arizona Tribe No
Salt River Pima-Maricopa Indian Community AZ TSRPMIC Arizona Tribe No
White Mountain Apache Tribe Watershed Program AZ TWMAWP Arizona Tribe No
Yavapai-Apache Nation AZ TYAN Arizona Tribe No
Arkansas Department of Environmental Quality AR DEQ Arkansas State Yes
Arkansas State University Ecotoxicology Research Facility AR ASUERF Arkansas Academic No
Equilibrium AR EQUIL Arkansas Private No
GBMc and Associates AR GBMC Arkansas Private No
Bay Area Clean Water Agencies CA BACWA California County or subcounty No
Bay Area Stormwater Management Agencies Association CA BASMAA California County or subcounty No
Blue Lake Rancheria CA TBLR California Tribe No
California Department of Water Resources CA DWR California State Yes
California Environmental Data Exchange Network CA CEDEN California State No
California Marine Research CA MR California Private No
California Pauma Band of Mission Indians CA TPBMI California Tribe No
California Regional Water Board, Region 1 CA RWB1 California State No
California Regional Water Board, Region 2 CA RWB2 California State No
California Regional Water Board, Region 4 CA RWB4 California State No
California Regional Water Board, Region 5 CA RWB5 California State Yes
California Regional Water Board, Region 6 CA RWB6 California State No
California Regional Water Board, Region 7 CA RWB7 California State No
California Regional Water Board, Region 9 CA RWB9 California State No
California Regional Water Quality Control Board CA RWQCB California State Yes
California Rice Commission CA CRC California NGO No
Central Coast Ambient Monitoring Program CA CCAMP California State No
Coalition for Urban and Rural Environmental Stewardship CA CURES California NGO No
Coyote Valley Tribal Environmental Protection Department CA TCV California Tribe No
East San Joaquin Water Quality Coalition CA ESJWQC California NGO No
Elk Valley Rancheria CA TEVR California Tribe No
Feather River Coordinated Resource Management CA FRCRM California NGO No
Fresno River Water Quality Monitoring CA FRWQM California State No
Goose Lake Coalition CA GLC California NGO No
Hoopa Valley Tribal Environmental Protection Agency CA THV California Tribe No
Hopland Band of Pomo Indians Tribal Environmental 

Protection Agency
CA THBPI California Tribe No

Karuk Tribe, Department of Natural Resources CA TKARUK California Tribe No
La Posta Band of Mission Indians CA TLP California Tribe No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Lake Elsinore and San Jacinto Watersheds Authority CA LESJWA California NGO No
Larry Walker Associates CA LWA California NGO No
Livestock and Land Area of Special Biological 

Significance
CA LL ASBS California State No

Los Coyotes Band of Cahuilla Cupeno Indians CA TLCBCCI California Tribe No
Mattole Salmon Group CA TMSG California Tribe No
Modesto Irrigation District CA MID California County or subcounty No
Morongo Band of Mission Indians CA TMBMI California Tribe No
Owens Valley Indian Water Commission CA TOVIWC California Tribe No
Pit River Tribe CA TPR California Tribe No
Quartz Valley Indian Reservation CA TQVIR California Tribe No
Quechan Indian Tribe CA TQI California Tribe No
Resighini Rancheria Environmental Protection CA RREP California Tribe No
Robinson Rancheria Environmental Center CA RREC California Tribe No
Sacramento Valley Water Quality Coalition CA SVWQC California NGO No
San Francisco Estuary Institute CA SFEI California NGO No
San Joaquin County and Delta Water Quality Coalition CA SJCDWQC California NGO No
San Joaquin River, Total Maximum Daily Load CA SJR California State No
San Manuel Band of Mission Indians CA TSMBMI California Tribe No
San Pasqual Band of Diegueno Indian CA TSPAS California Tribe No
Santa Ana Watershed Project Authority CA SAWPA California State No
Santa Ynez Chumash Environmental Office CA TSYCEO California Tribe No
Smith River Rancheria CA TSRR California Tribe No
Soboba Band of Luiseno Indians CA TSBLI California Tribe No
Southern California Stormwater Monitoring Coalition CA SMC California County or subcounty No
Southern San Joaquin Water Quality Coalition CA SSJWQC California NGO No
State Water Resources Control Board CA SWRCB California State No
Surface Water Ambient Monitoring Program CA SWAMP California State No
Sutter County Resource Conservation District CA SCRCD California County or subcounty No
Table Mountain Rancheria CA TTMR California Tribe No
Twenty-Nine Palms CA T29P California Tribe No
University of California CA UC California State No
Volunteer Monitoring Groups, US Environmental 

Protection Agency Region 9
CA VMG California Volunteer No

Westlands Stormwater Coalition CA WSWC California NGO No
Westside San Joaquin River Watershed Coalition CA WSSJRWC California NGO Yes
Wiyot Tribe CA TWIYOT California Tribe No
Yurok Tribe CA TYUROKTEP California Tribe No
Adams Rib Ranch CO ARR Colorado Volunteer No
Adrian Brown Consultants Incorporated CO ABC Colorado Private No
Advanced Sciences Incorporated CO ASI Colorado Private No
American Geological Services Incorporated CO AGS Colorado Private No
Animas River Stakeholders Group CO ARSG Colorado NGO No
Arapahoe Basin Ski Resort CO ABSR Colorado Private No
Barr Lake Milton Reservoir Watershed Association CO BLMRW Colorado NGO No
Bear Creek Reservoir CO BCR Colorado County or subcounty No
Berry Petroleum Company CO BPG Colorado Private No
Big Thompson Watershed Forum CO BTWF Colorado NGO No
Breckenridge Sanitation District CO BSD Colorado County or subcounty No
CBS Operations Incorporated CO CBS Colorado Private No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Centennial Water and Sanitation District CO CWSD Colorado County or subcounty No
Chatfield Reservoir CO CR Colorado County or subcounty No
City of Aurora CO AUR Colorado County or subcounty No
City of Brighton CO BRIGHT Colorado County or subcounty No
City of Fort Collins CO FORT Colorado County or subcounty No
City of Glendale CO GLEN Colorado County or subcounty No
City of Grand Junction CO GRJ Colorado County or subcounty No
City of Palisades CO PALI Colorado County or subcounty No
City of Pueblo CO PUEB Colorado County or subcounty No
City of Rifle CO RIFLE Colorado County or subcounty No
City of Silt CO SILT Colorado County or subcounty No
City of Steamboat Springs CO STEAMBOAT Colorado County or subcounty No
City of Thornton CO THORN Colorado County or subcounty Yes
Clear Creek Watershed Foundation CO CCWF Colorado NGO No
Coal Creek Watershed Coalition CO CCWC Colorado NGO No
Colorado 319 Project CO 319 Colorado State No
Colorado Department of Natural Resources CO DNR Colorado State No
Colorado Department of Public Health and Environment CO DPHE Colorado State Yes
Colorado Department of Transportation CO DOT Colorado State No
Colorado Division of Reclamation, Mining and Safety CO DRMS Colorado State No
Colorado Geological Survey CO GS Colorado State No
Colorado Mountain College CO CMC Colorado Academic No
Colorado Oil and Gas Conservation Commission CO OGCC Colorado County or subcounty No
Colorado Selenium Studies (USGS) CO SS USGS Colorado Federal No
Colorado Springs Utilities CO CSUTL Colorado County or subcounty No
Colorado State University CO CSU Colorado Academic No
Colorado Wildlife Division CO WD Colorado State No
Denver Department Of Environmental Health CO DDEH Colorado County or subcounty No
Denver Water Department CO DWD Colorado County or subcounty No
Eagle Mine Superfund Site Assessment CO EMSSA Colorado Federal No
Eagle River Water and Sanitation District CO ERWSD Colorado County or subcounty No
ENCANA Corporartion CO ENCANA Colorado Private No
Grand River Consulting CO GRC Colorado Private No
Gunnison Basin & Grand Valley Selenium Task Force CO GBGV STF Colorado Volunteer No
Hydrosphere Resource Consultants Incorporated CO HRC Colorado Private No
Lake Fork Watershed Stakeholders CO LFWS Colorado NGO No
Littleton and Englewood Wastewater Treatment Plant CO LE WWTP Colorado County or subcounty Yes
Metro Wastewater Reclamation District CO MWRD Colorado County or subcounty Yes
Mining Remedial Recovery Company CO MRRC Colorado Private No
North Fork River Improvement Association CO NFRIA Colorado NGO No
Northern Colorado Water Conservancy District CO NCWCD Colorado Federal No
Northwest Colarado Council of Government CO NWCG Colorado County or subcounty No
Pueblo of Acoma CO TPA Colorado Tribe No
San Juan Citizens Alliance CO SJCA Colorado NGO No
Silverthorne Dillon Joint Sewer Authority CO SDJSA Colorado County or subcounty No
South Adams County Water and Sanitation District CO SACWSD Colorado County or subcounty No
Southern Ute Tribe CO TSU Colorado Tribe No
Standley Lake Watershed Group CO STAND Colorado NGO No
Summit Water Quality Committee CO SWQC Colorado County or subcounty Yes
Sunnyside Gold Corporation CO SGC Colorado Private No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

The Rivers of Colorado Water Watch Network CO CRWWN Colorado Volunteer Yes
Town of Telluride Public Works CO TPW Colorado County or subcounty No
University of Colorado Institute of Arctic and Alpine 

Research
CO INSTAAR Colorado Academic No

Ute Mountain Utes Tribe CO TUMU Colorado Tribe No
Wright Water Engineers Incorporated CO WWE Colorado Private No
Connecticut Department of Energy and Environmental 

Protection
CT DEEP Connecticut State No

Delaware Department of Natural Resources and 
Environmental Control

DE DNREC Delaware State Yes

Delaware Geological Survey DE DGS Delaware State No
District Department of the Environment DC DDOE District of 

Columbia
State Yes

Alachua County Environmental Protection Department FL ACEPD Florida County or subcounty No
AMEC Foster Wheeler FL AMEC Florida Private No
Avon Park Air Force Range FL APAFR Florida Federal No
Babcock Ranch FL BR Florida Private No
Biological Research Associates FL BRA Florida Private No
Brevard County Stormwater Utility Department FL BCSUD Florida County or subcounty No
Broward County Environmental Protection Department FL BCEPD Florida County or subcounty No
Charlotte County FL CC Florida County or subcounty No
Choctawhatchee Basin Alliance FL CBA Florida Volunteer No
City of Atlantic Beach FL CAB Florida County or subcounty No
City of Cape Coral FL CCC Florida County or subcounty No
City of Deltona FL CD Florida County or subcounty No
City of Jacksonville FL CJ Florida County or subcounty No
City of Jacksonville Beach FL JB Florida County or subcounty No
City of Naples FL NAPLES Florida County or subcounty No
City of Neptune Beach FL CNB Florida County or subcounty No
City of Port Saint Joe Wastewater Treatment Plant FL CPSJ Florida County or subcounty No
City of Punta Gorda FL CPG Florida County or subcounty No
City of Sanibel, Natural Resources Department FL CSNRD Florida County or subcounty No
City of St Petersburg FL CSP Florida County or subcounty No
City of Tallahassee Stormwater FL CTS Florida County or subcounty No
City of Tampa Bay Study Group FL TAMP Florida County or subcounty No
Collier County Coastal Zone Management Department FL CCCZMD Florida County or subcounty No
Collier County Pollution Control FL CCPC Florida County or subcounty No
Dade Environmental Resource Management FL DERM Florida County or subcounty No
Environmental Protection Commission of Hillsborough 

County
FL HLCE Florida County or subcounty Yes

Florida Department of Environmental Protection FL DEP Florida State Yes
Florida Department of Regulatory and Economic 

Resources
FL DRER Florida County or subcounty No

Florida Fish and Wildlife FL FW Florida State No
Florida Fish and Wildlife Conservation Commission FL FWCC Florida State Yes
Florida Keys National Marine Sanctuary FL NMS Florida State No
Florida Lakewatch FL LW Florida Volunteer No
Gulf Power Company FL GPC Florida Private No
IMC Agrico FL IMCA Florida Private No
Jacksonville Electric Authority FL JEA Florida Private No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Lake County Water Resource Management FL LCRM Florida County or subcounty No
Lee County FL LEECO Florida County or subcounty No
Lee County Hyacinth Control District FL LCHCD Florida County or subcounty No
Leon County Public Works FL LCPW Florida County or subcounty Yes
Loxahatchee River District FL LRD Florida County or subcounty Yes
Manatee County Environmental Management Department FL MCEMD Florida County or subcounty Yes
Marine Resources Council of East Florida FL MRCEF Florida Private No
McGlynn Laboratories Incorporated FL MCGL Florida Private Yes
Naval Station Mayport FL NSM Florida Federal No
Northwest Florida Water Management District FL NWFWMD Florida County or subcounty Yes
Orange County Environmental Protection FL OCEP Florida County or subcounty Yes
Palm Beach County Environmental Resources 

Management Department
FL PBCERMD Florida County or subcounty No

Pasco County Stormwater Management Division FL PCSMD Florida County or subcounty No
Peace River Manasota Regional Water Supply Authority FL PRMRWS Florida County or subcounty No
Pinellas County Department of Environmental 

Management
FL PCDEM Florida County or subcounty Yes

Polk County Water Resources FL PCWR Florida County or subcounty No
Reedy Creek Improvement District - Environmental 

Services
FL RCID Florida County or subcounty No

Sanibel Captiva Conservation Foundation FL SCCF Florida County or subcounty No
Sarasota County Environmental Services FL SCES Florida County or subcounty No
Schroeder-Manatee Ranch Communities Incorporated FL SMRC Florida Private No
Seminole County FL SEMC Florida County or subcounty Yes
Seminole Tribe of Florida FL TSF Florida Tribe No
South Florida Water Management District FL SFWMD Florida County or subcounty No
Southwest Florida Water Management District FL SWFWMD Florida County or subcounty Yes
St. Johns Water Management District FL SJWMD Florida County or subcounty Yes
Suwannee River Water Management District FL SRWMD Florida County or subcounty Yes
Tampa Bay Water FL TBW Florida County or subcounty No
The Conservancy of Southwest Florida FL CSW Florida NGO No
Volusia County Environmental Health Lab FL VCEHL Florida County or subcounty No
Dial Cordy and Associates GA DCA Georgia Private No
Georgia Department of Natural Resources GA DNR Georgia State Yes
Georgia Department of Natural Resources, Coastal 

Resources Division
GA DNRCRD Georgia State No

Southeastern Natural Sciences Academy GA SENSA Georgia Private No
Hawaii Department of Health HI DOH Hawaii State No
Coeur dAlene Tribe ID TCD Idaho Tribe No
Idaho Department of Environmental Quality ID DEQ Idaho State Yes
Idaho Environmental Data Management System ID EDMS Idaho State No
Nez Perce Tribe ID TNP Idaho Tribe No
Shoshone Bannock Tribe ID TSB Idaho Tribe No
American Water Company IL AWC Illinois County or subcounty No
Illinois Environmental Protection Agency IL EPA Illinois State Yes
Illinois State Water Survey IL SWS Illinois State No
Metropolitan Water Reclamation District of Greater 

Chicago
IL MWRDGC Illinois County or subcounty No

Park District of Highland Park IL PDHP Illinois County or subcounty No
City of Elkhart Public Works and Utilities IN EPWU Indiana County or subcounty No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Clifty Creek Watershed Project IN CCWP Indiana Volunteer No
Clinton County Soil Water and Conservation District IN CSWCD Indiana County or subcounty No
Dearborn County Soil Water and Conservation District IN DSWCD Indiana County or subcounty No
Hoosier Riverwatch IN HRW Indiana Volunteer No
Indiana Department of Environmental Management IN DEM Indiana State Yes
Indiana Office of State Chemist IN OSC Indiana State No
Indianapolis Citizen Energy Group IN CEG Indiana County or subcounty No
Marion County Public Health Department IN MCHD Indiana County or subcounty Yes
Muncie Bureau of Water Quality IN MBWQ Indiana County or subcounty No
Save the Dunes Conservation Fund IN STDCF Indiana Volunteer No
Tipton County Soil Water and Conservation District IN TSWCD Indiana County or subcounty No
Wabash River Enhancement Corporation IN WREC Indiana Volunteer Yes
Wayne County Soil Water and Conservation District IN WSWCD Indiana County or subcounty No
Des Moines River Water Quality Network IA ISUCOE Iowa Academic/Federal Yes
Des Moines Water Works IA DMWW Iowa County or subcounty Yes
Iowa Department of Natural Resources IA DNR Iowa State Yes
Iowa Geological Survey Watershed Snapshots IA GSWSP Iowa State No
Iowa Volunteer Water Monitoring Program IA VWMP Iowa Volunteer No
Meskwaki Nation, Department of Natural Resources IA TMN Iowa Tribe No
Kansas Biological Survey KS BS Kansas State No
Kansas Department of Health and Environment KS DHE Kansas State Yes
Kaw Nation KS TKN Kansas Tribe No
Kickapoo Tribe in Kansas KS TKTK Kansas Tribe No
Prairie Band Potawatomi Nation KS TPBPN Kansas Tribe No
Quapaw Tribe of Oklahoma KS TQTO Kansas Tribe No
Kentucky Department for Natural Resources and 

Environmental Protection
KY DEP Kentucky State Yes

Northern Kentucky University KY NKU Kentucky Academic No
Watershed Watch KY WW Kentucky Volunteer No
Louisiana Department of Environmental Quality LA DEQ Louisiana State Yes
Houlton Band of Maliseet Indians ME THBMI Maine Tribe No
Maine Department of Environmental Protection ME DEP Maine State No
Passamaquoddy Tribe at Pleasant Point ME TPTPP Maine Tribe No
Chesapeake Bay Program MD CBP Maryland Regional No
Friends of Sligo Creek MD FSC Maryland Volunteer No
Maryland Department of Natural Resources MD DNR Maryland State Yes
Maryland Department of the Environment MD DOE Maryland State No
Charles River Watershed Association MA CRWA Massachusetts Volunteer No
Massachusetts Department of Environmental Protection MA DEP Massachusetts State No
Massachusetts Westfield River Water Monitoring Program MA WRWMP Massachusetts Volunteer No
Merrimack River Watershed Council MA MRWC Massachusetts Volunteer No
Mystic River Watershed Association MA MRWA Massachusetts Volunteer No
Wampanoag Tribe of Gay Head MA TWTGH Massachusetts Tribe No
Bay Mills Indian Community MI TBMIC Michigan Tribe No
Grand Traverse Band of Ottawa and Chippewa Indians MI TGTBOCI Michigan Tribe No
Hannaville Tribal Community MI THTC Michigan Tribe No
Little River Band of Ottawa Indians MI TLRBOI Michigan Tribe No
Little Traverse Bay Bands of Odawa Indians MI TLTBBOI Michigan Tribe No
Match-e-be-nash-she-wish Band of Potawatomi MI TMBP Michigan Tribe No
Michigan Department of Environmental Quality MI DEQ Michigan State Yes
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Nottawaseppi Huron Band of the Potawatomi MI TNHBP Michigan Tribe No
Pokagon Band of Potawatomi Indians, Department of 

Natural Resources
MI TPBPI Michigan Tribe No

Saginaw Chippewa Planning Department MI TSCPD Michigan Tribe No
University of Michigan MI UMI Michigan Academic No
Emmons and Oliver Resources MN EOR Minnesota Private No
Fond du Lac Band of Chippewa MN TFDL Minnesota Tribe No
Grand Portage Band of Chippewa Indians MN TGPR Minnesota Tribe No
Lower Sioux Indian Community MN TLSIC Minnesota Tribe No
Metropolitan Council Environmental Services MN MCES Minnesota County or subcounty Yes
Minnesota Department of Agriculture MN DA Minnesota State Yes
Minnesota Pollution Control Agency MN PCA Minnesota State Yes
Nett Lake Band of Chippawa Indians MN TBFNL Minnesota Tribe No
Prairie Island Community MN TPIC Minnesota Tribe No
Red Lake Division of Natural Resources MN TRLDNR Minnesota Tribe No
Shakopee Mdewakanton MN TSMSC Minnesota Tribe No
Upper Sioux Community MN TUSIC Minnesota Tribe No
Mississippi Department of Environmental Quality MS DEQ Mississippi State No
MS Band of Choctaw Indians MS TBCI Mississippi Tribe No
Advanced Aquatic Technology Associates Incorporated MO AATA Missouri Private No
Ameren Union Electric Corporation MO AUEC Missouri Private No
Archer Engineering Incorporated MO ARCH Missouri Private No
Associated Electric Cooperative Incorporated MO AECI Missouri Private No
Black and Veatch Incorporated MO BV Missouri Private No
Blue River Watershed Association MO BRWA Missouri Volunteer No
Brookside Environmental Services MO BRKSD Missouri Private No
Camp Dresser McKee Incorporated MO CDM Missouri Private No
Carthage High School MO CHS Missouri Academic No
Certainteed Incorporated MO CT Missouri Private No
Christian County Health Department MO CCHD Missouri County or subcounty No
City of Sprinfield Department of Public Works MO SPFDPW Missouri County or subcounty No
City Utilities of Springfield MO CUSF Missouri County or subcounty No
Consulting Analytical Services Incorporated MO CASI Missouri Private No
Continental Grain Corporation MO CNGRN Missouri Private No
Crowder College, Neosho, Missouri MO CC Missouri Academic Yes
Doe Run Corporation MO DOERN Missouri Private No
Ecology and Environment Incorporated MO EE Missouri Private No
Empire Electric Cooperative Incorporated MO EEC Missouri Private No
Entrix Incorporated MO ENTX Missouri Private No
Envirodyne Incorporated MO ENVDYN Missouri Private No
Environ International MO ENVRN Missouri Private No
Environmental Science and Engineering MO ESE Missouri Private No
Environmental Systems Corporation MO ESC Missouri Private No
Forrester Group Incorporated MO FORS Missouri Private No
Hydrometrics Incorporated MO HYDR Missouri Private No
Jasper County Health Department MO JCHD Missouri County or subcounty No
Johnson County Egg Farm MO JCEF Missouri Private No
Kansas City Public Works MO KCPW Missouri County or subcounty No
Lake Ozark Council of Government MO LOCOG Missouri County or subcounty No
Lake Saint Louis Community Association MO LSLCA Missouri County or subcounty No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Lawrence County Health Department MO LCHD Missouri County or subcounty No
Mactec Incorporated MO MACT Missouri Private No
Meek Farms Incorporated MO MEEK Missouri Private No
Metropolitan Sewer District of Saint Louis MO MSD Missouri County or subcounty No
Midwest Environmental Consultants MO MEC Missouri Private No
Missouri American Water Company MO AMRWC Missouri County or subcounty No
Missouri Department of Conservation MO DOC Missouri State No
Missouri Department of Health and Senior Services MO DHSS Missouri State No
Missouri Department of Natural Resources MO DNR Missouri State No
Missouri State University MO MSU Missouri Academic No
Missouri Water Pollution Control Board MO WPCB Missouri State No
Murphy Family Farms Incorporated MO MRPH Missouri Private No
Newfields Incorporated MO NWFD Missouri Private No
Newton County Health Department MO NCHD Missouri County or subcounty No
Novartis Incorporated MO NVRT Missouri Private No
Peabody Coal Company MO PCC Missouri Private No
Perry County Soil and Water District MO PCSWD Missouri County or subcounty No
Premium Standard Farms Incorporated MO PSF Missouri Private No
Sac and Fox Nation of Missouri in Kansas and Nebraska MO TSACFOX Missouri Tribe No
Saint Joseph City Water Company MO SJCWC Missouri County or subcounty No
Saint Louis City Water Company MO STLWC Missouri County or subcounty No
Science Applications International Corporation MO SAIC Missouri Private No
Sharp Land and Cattle Company MO SLCC Missouri Private No
Southeast Missouri State University MO SEMSU Missouri Academic No
Stone County Health Department MO SCHD Missouri County or subcounty No
Sverdrup and Parcel Incorporated MO SVDRP Missouri Private No
Syngenta Crop Science Incorporated MO SNGNTA Missouri Private No
Terranext Corporation MO TRNX Missouri Private No
Tetratech Incorporated MO TTRT Missouri Private No
Tyson Foods MO TYSN Missouri Private No
University of Missouri, Columbia MO UMC Missouri Academic No
University of Missouri, Rolla MO UMR Missouri Academic No
Versar Incorporated MO VRSR Missouri Private No
Washington University, Saint Louis MO WUSL Missouri Academic No
Water Sentinels Sierra Club MO WSSC Missouri Volunteer No
West Incorporated MO WEST Missouri Private No
William Jud, volunteer MO JUD Missouri Volunteer No
Eastern Shawnee Tribe of Oklahoma OK ESTO MO Tribe No
Assiniboine and Sioux Tribes Fort Peck Indian Reservation MT TFPIR Montana Tribe No
Blackfeet Nation (Montana) MT TBN Montana Tribe No
Chippewa Cree Tribe MT TCC Montana Tribe No
Gros Ventre and Assiniboine Tribe MT TGVAT Montana Tribe No
Montana Bureau of Mines and Geology MT BMG Montana State No
Montana Department of Environmental Quality MT DEQ Montana State Yes
Montana PPL Corporation MT PPLC Montana Private No
Montana Volunteer Water Quality Monitoring MT VWQM Montana Volunteer No
Montana Watershed Data MT WD Montana State No
Northen Cheyenne Tribe MT TNC Montana Tribe No
Otter Creek Coal MT OCC Montana Private No
Nebraska Department of Environmental Quality NE DEQ Nebraska State Yes
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Winnebago Tribe NE TWIN Nebraska Tribe No
Moapa Band of Pautes NV TMBP Nevada Tribe No
Nevada Department of Agriculture NV DA Nevada State No
Nevada Department of Conservation and Natural 

Resources
NV DECNR Nevada State Yes

Pyramid Lake Paiute Tribe NV TPLP Nevada Tribe No
Shoshone-Paiute Tribes NV TSP Nevada Tribe No
Southern Nevada Water Authority (Environmental 

Monitoring and Management)
NV SNWA Nevada State No

Washoe Tribe of NV and CA NV TW Nevada Tribe No
New Hampshire Department of Environmental Services NH DES New 

Hampshire
State No

University of New Hampshire Center for Freshwater 
Biology

NH UCFB New 
Hampshire

Academic No

Upper Merrimack River Local Advisory Committee NH UMRLAC New 
Hampshire

Volunteer No

Alliance For A Living Ocean NJ ALO New Jersey Volunteer No
Brick Utilities NJ BTMUA New Jersey Private No
Great Swamp Watershed Association NJ GSWA New Jersey Volunteer No
Monmouth County Health Department NJ MCHD New Jersey County or subcounty No
Musconetcong River Watershed Association NJ MRWA New Jersey Volunteer No
New Jersey Department of Environmental Protection NJ DEP New Jersey State Yes
New Jersey Harbor Dischargers Group NJ HDG New Jersey Volunteer No
New Jersey Pinelands Commission NJ PC New Jersey Volunteer No
Pequannock River Coalition NJ PRC New Jersey Volunteer No
Rutgers Cooperative Extension Water Resource Program NJ RCEWRP New Jersey Academic No
Stony Brook-Millstone Watershed Association NJ SBMWA New Jersey Volunteer No
Daniel B. Stephens and Associates NM DBSA New Mexico Private No
LV Wilcox and J Williams NM LVW JW New Mexico Academic No
Mescalero Apache Tribe NM TMAT New Mexico Tribe No
Nambe Pueblo NM TNP New Mexico Tribe No
New Mexico Environment Department NM ED New Mexico State No
New Mexico Interstate Stream Commission Lower Rio 

Grande Compendium
NM ISC LRG 

COMP
New Mexico Regional No

New Mexico San Ildefonso Pueblo NM SIP New Mexico State No
New Mexico State University NM SU New Mexico Academic No
Pueblo of Isleta NM TPI New Mexico Tribe No
Pueblo of Jemez NM TPJ New Mexico Tribe No
Pueblo of Laguna NM TPL New Mexico Tribe No
Pueblo of Pojoaque NM TPP New Mexico Tribe No
Pueblo of Sandia Water Quality Program NM TPSWQP New Mexico Tribe No
Pueblo of Santa Ana NM TPSA New Mexico Tribe No
Pueblo of Santa Clara NM TPSC New Mexico Tribe No
Pueblo of Taos NM TPT New Mexico Tribe No
Pueblo of Tesuque Environment Department NM TPTED New Mexico Tribe No
San Felipe Pueblo NM TSFP New Mexico Tribe No
SS Papadopulos and Associates NM SSPA New Mexico Private No
Sustainability of semi-Arid Hydrology and Riparian Areas NM SAHRA New Mexico Academic No
University of New Mexico NM UNM New Mexico Academic No
Community Science Institute NY COMSI New York NGO Yes
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Cortland County Soil and Water Conservation District NY CCSWCD New York County or subcounty No
New York Department of Environmental Conservation NY DEC New York State No
New York tribe unspecified NY TMAMIN New York Tribe No
Otsego County Soil and Water Conservation District NY OCSWCD New York County or subcounty No
Saint Regis Mohawk Tribe NY TSRM New York Tribe No
Sparkill Creek Watershed Alliance NY SCWA New York Volunteer No
State University of New York, Oneonta NY SUNYO New York Academic No
Eastern Band of Cherokee Indians NC TEBCI North Carolina Tribe No
Haywood Waterways Association, Incorporated NC HWA North Carolina Private No
North Carolina Department of Envrionment and Natural 

Resources
NC DENR North Carolina State Yes

North Dakota Department of Health ND DOH North Dakota State Yes
North Dakota State Water Commission ND SWC North Dakota State No
Spirit Lake Tribal ND TSL North Dakota Tribe No
Three Affiliated Tribes: Mandan, Hidatsa, and Arikara 

Nation
ND TMHAN North Dakota Tribe No

Turtle Mountain Environmental Office ND TMEO North Dakota Tribe No
Heidelberg University, National Center for Water Quality 

Research
OH HDLBG Ohio Academic Yes

Miami Conservancy District OH MCD Ohio County or subcounty No
Northeast Ohio Regional Sewer District OH NEORSD Ohio State No
Ohio Environmental Protection Agency OH EPA Ohio State Yes
Absentee Shawnee Tribe of Oklahoma OK TAST Oklahoma Tribe No
Cherokee Nation OK TCN Oklahoma Tribe No
Chickasaw Nation OK TCKN Oklahoma Tribe No
Choctaw Nation OK TCHN Oklahoma Tribe No
Citizen Potawatomi Nation OK TCPN Oklahoma Tribe No
Delaware Nation OK TDN Oklahoma Tribe No
Iowa Tribe of Oklahoma OK TI Oklahoma Tribe No
Kaw Nation of Oklahoma OK TKN Oklahoma Tribe No
Kickapoo Tribe of Oklahoma OK TKCN Oklahoma Tribe No
Kiowa Tribe of Oklahoma OK TK Oklahoma Tribe No
Miami Tribe of Oklahoma OK TMI Oklahoma Tribe No
Muscogee Creek Nation OK TMCN Oklahoma Tribe No
Oklahoma Conservation Commission OK CONC Oklahoma State No
Oklahoma Corporation Commission OK CORC Oklahoma State No
Oklahoma Department of Environmental Quality OK DEQ Oklahoma State No
Oklahoma Environmental Protection Office OK TEPO Oklahoma Tribe No
Oklahoma Water Resources Board OK WRB Oklahoma State Yes
Osage Nation Environmental and Natural Resources 

Department
OK ONENRD Oklahoma Tribe No

Otoe Missouria Tribe of Oklahoma OK TOM Oklahoma Tribe No
Ottawa Tribe of Oklahoma OK TOT Oklahoma Tribe No
Pawnee Nation OK TPN Oklahoma Tribe No
Peoria Tribe of Indians OK TPI Oklahoma Tribe No
Quapaw Tribe Environmental Office OK TQU Oklahoma Tribe No
Sac and Fox Nation OK TSFN Oklahoma Tribe No
Seneca Cayuga Tribe OK TSC Oklahoma Tribe No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Tonkawa Tribe of Oklahoma OK TT Oklahoma Tribe No
Wichita Department of Environmental Programs OK WDEP Oklahoma State No
Wyandotte Nation (Oklahoma) OK TWN Oklahoma Tribe No
Burns Paiute Tribe OR TBP Oregon Tribe No
City of Hillsboro, Oregon Water Department OR HWD Oregon County or subcounty No
Confederated Tribes of the Coos, Lower Umpqua and 

Siuslaw Indians
OR TCTC LUSI Oregon Tribe No

Cow Creek Umpqua Indians OR TCCU Oregon Tribe No
Klamath Tribes Research Station OR KTRS Oregon Tribe Yes
Oregon Clackamas River Water OR CRW Oregon State No
Oregon Department of Agriculture OR DA Oregon State No
Oregon Department of Environmental Quality OR DEQ Oregon State Yes
Oregon Klamath Basin Monitoring Program OR KBMP Oregon NGO No
Oregon Public Works, City of Salem OR SPW Oregon County or subcounty No
Oregon, Portland Water Bureau OR PWB Oregon County or subcounty Yes
The Confederated Tribes of Grand Ronde OR TCTGR Oregon Tribe No
Upper Deschutes Watershed Council OR UDWC Oregon State No
Antietam Watershed Association PA AWA Pennsylvania Volunteer/Academic No
Appalachia Hydrogeologic and Environmental Consulting, 

Inc.
PA AHEC Pennsylvania Private No

Centre County Senior Environmental Corps PA CCSEC Pennsylvania Volunteer No
ClearWater Conservancy PA CWCY Pennsylvania Volunteer No
Clinton County Conservation District PA CCCD Pennsylvania County or subcounty No
Conodoguinet Creek Watershed Association PA CDGTCWA Pennsylvania Volunteer No
Countryside Conservancy PA CSCY Pennsylvania Volunteer No
Dauphin County Conservation District PA DCCD Pennsylvania County or subcounty No
Dickinson College - ALLARM environmental organization PA DCALL Pennsylvania Academic No
God’s Country Trout Unlimited PA GCTU Pennsylvania Volunteer No
Keystone Watershed Montioring Network PA KWMN Pennsylvania Volunteer No
Lancaster County Conservation District PA LCCD Pennsylvania County or subcounty No
Northumberland County Conservation District PA NCCD Pennsylvania County or subcounty No
Pennsylvania Department of Environmental Protection PA DEP Pennsylvania State Yes
Pennsylvania Fish and Boat Commission PA FBC Pennsylvania State No
Pennsylvania Senior Environment Corps and Nature 

Abounds
PA SECSK Pennsylvania Volunteer No

Pennsylvania State University PA PSU Pennsylvania Academic No
Schuylkill Action Network PA SAN Pennsylvania Volunteer No
Shermans Creek Conservation Association PA SHMCCA Pennsylvania Volunteer No
Stroud Water Research Center PA SWRC Pennsylvania Academic No
The E.L. Rose Conservancy of Susquehanna County PA ELRCSC Pennsylvania Volunteer No
Puerto Rico Department of Natural and Environmental 

Resources
PR DNER Puerto Rico State No

Rhode Island Department of Health RI DH Rhode Island State No
Environmental Quality Laboratory Coastal Carolina 

University
SC EQLCCU South Carolina Academic No

South Carolina Department of Health and Environmental 
Control

SC DHEC South Carolina State Yes

South Carolina Santee Cooper Public Service Authority SC SCPSA South Carolina State No
Crow Creek Sioux Tribe SD TCCS South Dakota Tribe No
Flandreau Santee Sioux Tribe SD TFSS South Dakota Tribe No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Lower Brule Sioux Tribe SD TLBS South Dakota Tribe No
Oglala Sioux Tribe SD TOS South Dakota Tribe No
South Dakota Department of Environmental and Natural 

Resources
SD DENR South Dakota State Yes

South Dakota Geological Survey SD GS South Dakota State No
Tennessee Department of Agriculture TN DA Tennessee State No
Tennessee Department of Environment and Conservation TN DEC Tennessee State No
Alabama-Coushatta Tribe of Texas TX TAC Texas Tribe No
Meadows Center for Water and the Environment TX MCWE Texas Volunteer No
Texas Commission on Environmental Quality TX CEQ Texas State Yes
LT Environmental Incorporated UT LTE Utah Private No
Utah Department of Environmental Quality UT DEQ Utah State Yes
Utah State University UT USU Utah Academic No
Vermont Department of Environmental Conservation VT DEC Vermont State No
Virginia Department of Environmental Quality VA DEQ Virginia State Yes
Virginia Department of Health VA DH Virginia State No
Clallam County Department of Community Development WA CC DCD Washington County or subcounty No
Colville Confederated Tribes WA TCC Washington Tribe No
Jamestown Sklallam Tribe WA TJS Washington Tribe No
Kalispel Natural Resources Department Tribal WA TK NRD Washington Tribe No
Lower Elwha Klallam Tribe WA TLEK Washington Tribe No
LummiNation WA TLN Washington Tribe No
Makah Nation WA TMN Washington Tribe No
Makah Tribe WA TMT Washington Tribe No
Midnite Mine Environmental Data WA MMED Washington Federal No
Muckleshoot Indian Tribe WA TMIT Washington Tribe No
Nisqually Water Quality WA TNQ Washington Tribe No
Nooksack Indian Tribe WA TN Washington Tribe No
Port Gamble S’Klallam Tribe WA TPGS Washington Tribe No
Puyallup Tribe of Indians WA TP Washington Tribe No
Quileute Natural Resources WA TQNR Washington Tribe No
Quinault Indian Nation WA TQIN Washington Tribe No
Samish Indian Nation WA TSIN Washington Tribe No
Shoaltwater Bay Tribe WA TSB Washington Tribe No
Skagit River Watershed Grant WA TSRWG Washington Tribe No
Skokomish Indian Tribe WA TSKO Washington Tribe No
Snoqualmie Tribe Environmental and Natural Resources 

Department
WA TS Washington Tribe No

Spokane Tribe of Indians WA TSPO Washington Tribe No
Squaxin Island Tribe WA TSQU Washington Tribe No
Stillaguamish Tribe WA TSTILL Washington Tribe No
Suquamish Tribe WA TSUQUA Washington Tribe No
Swinomish Indian Tribal Community WA TSWIN Washington Tribe No
Tacoma-Pierce County Health Department WA TPDH Washington County or subcounty No
TerraGraphics Environmental Engineering, Inc. WA TEE Washington Private No
Thurston County Environmental Health WA TCEH Washington Private No
Tulalip Tribes WA TT Washington Tribe No
Upper Skagit Tribe WA TUS Washington Tribe No
Washington State Department of Ecology WA SDE Washington State Yes
Whatcom County Public Works WA WCPW Washington State No
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Table 1.  Sources of water-quality data included in the initial data compilation and used in the trend analysis.—Continued

[NGO, non-governmental organization; --, not applicable]

Agency name
Agency  

abbreviation
State

Agency  
type

Included in the 
trend analysis1

Yakama Nation Environmental Management Program WA TYNEMP Washington Tribe No
West Virginia Department of Environmental Protection WV DEP West Virginia State Yes
Green Bay Metropolitan Sewerage District WI GBMSD Wisconsin County or subcounty No
Bad River Tribe WI TBR Wisconsin Tribe No
Forest County Potawatomi Community WI TFCPC Wisconsin Tribe No
Ho-Chunk Nation WI THCN Wisconsin Tribe No
Lac Courte Oreilles Band of Lake Superior Chippewa 

Indians of Wisconsin
WI TLCORBLSCI Wisconsin Tribe No

Lac du Flambeau Band of Lake Superior Chippewa Indiana 
Water Program

WI LDF Wisconsin Tribe No

Oneida Tribe of Wisconsin WI TON Wisconsin Tribe No
Saint Croix Chippewa Indians of Wisconsin WI TSCCI Wisconsin Tribe No
Sokaogon Chippewa Community WI TSKCC Wisconsin Tribe No
Stockbridge-Munsee Community WI TSMC Wisconsin Tribe No
Wisconsin Department of Natural Resources WI DNR Wisconsin State Yes
Wisconsin Volunteer Stream Monitoring WI VOL Wisconsin Volunteer No
Wind River Environmental Quality Commission WY WREQC Wyoming County or subcounty No
Wyoming Department of Environmental Quality WY DEQ Wyoming State No
Wyoming Popo Agie Conservation District WY PACD Wyoming State No
Delaware River Basin Commission RG4 DRBC -- Regional No
Guam Environmental Protection Agency US GUAM -- State No
International Boundary and Water Commission - Water 

Quality
IBWC -- International No

Katrina Response Special Projects RG1 KRSP -- Federal No
Missouri River Public Water Supplies Association RG4 MRPWSA -- Regional No
New York Interstate Environmental Commission RG3 NYIEC -- Regional No
Ohio River Valley Water Sanitation Commission 

(ORSANCO)
RG8 ORSANCO -- Regional Yes

Potomac Appalachian Trail Club RG2 PATCM -- Volunteer No
Saint Joseph River Watershed Initiative RG3 SJRWI -- Regional No
Susquehanna River Basin Commission SRBC -- Regional Yes
Tri-State Water Quality Council RG3 TSWQC -- State No
U.S. Army Corps of Engineers US ACE -- Federal No
U.S. Bureau of Land Management US BLM -- Federal No
U.S. Bureau of Reclamation US BR -- Federal Yes
U.S. Department of Agriculture US DA -- Federal No
U.S. Department of Agriculture, Agriculture Research 

Service
US DA ARS -- Federal No

U.S. Department of Defense US DOD -- Federal No
U.S. Department of Energy US DOE -- Federal No
U.S. Environmental Protection Agency US EPA -- Federal Yes
U.S. Fish and Wildlife Service US FWS -- Federal No
U.S. Forest Service US FS -- Federal No
U.S. Geological Survey USGS -- Federal Yes
U.S. National Estuarine Research Reserve System US NERRS -- Federal No
U.S. National Park Service US NPS -- Federal Yes
U.S. Office of Surface Mining US OSM -- Federal No
Upper Midwest Environmental Sciences Center RG5 UMESC -- Federal No

1All pesticide and ecology data used in the trend analysis were from the U.S. Geological Survey.
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Figure 1.  General steps for streamgage matching—
Assigning water-quality, pesticide, and ecology sites 
to streamgages for use in trend analysis.

Indexing Water-Quality Sites and Streamgages 
to the National Hydrography Dataset Network

The medium resolution National Hydrography Dataset 
(NHDPlus)V2 (McKay and others, 2012) was used as 
the geospatial framework to pair water-quality sites and 
streamgages and to identify groups of water-quality sites that 
were geographically close enough to consider combining their 
water-quality records (referred to as “compositing”). In the 
NHDPlus, line segments termed “flowlines” represent portions 
of streams. These are in concept “stream reaches,” and 
typically span the distance between two inflowing tributaries 
or between a tributary and a confluence with a larger stream. 
Each flowline is associated with a unique identifier (ComID). 
The ComID serves as the primary key in the streamgage 
matching and compositing processes.

The term “indexing” refers to the process of matching 
water-quality sites and streamgages to a stream flowline in 
the NHDPlus. Indexing streamgage and water-quality sites 
to flowlines in the NHDPlus is the critical first step of the 
streamgage-matching and compositing processes. Because 
USGS streamgage locations are already a part of the NHDPlus 

dataset, no additional work was necessary to index USGS 
streamgages to a ComID.

As part of the data compilation for this study, a total 
of 2,911 non-USGS streamgages were identified, which 
spanned 15 States and were operated by six different 
agencies including the U.S. Army Corps of Engineers, the 
International Boundary and Water Commission, the Colorado 
Division of Water Resources, the Oregon Water Resources 
Department, the Tennessee Valley Authority, and the Bureau 
of Reclamation. The non-USGS streamgages were identified 
based on previous USGS studies (Hooper and others, 2001; 
Ryberg and others, 2014; Chanat and others, 2016) and 
information from USGS Water Science Centers about the 
operation of streamgages by other agencies in their State. 
The locations of non-USGS streamgages were obtained 
from their respective source agencies, manually verified for 
accuracy, corrected if necessary, and indexed to the NHDPlus 
hydrologic network, thereby assigning the streamgage 
a ComID.

The water-quality site-location information—latitude, 
longitude, and name—was acquired from a large number of 
sources and agencies and varied in precision and accuracy. 
Inspections of the original location information revealed an 
unacceptable number of water-quality sites that were located 
on or near the wrong stream flowline. To ensure water-
quality sites were indexed with the correct stream flowline, 
an ARCGIS NHDPlus version 2 indexing tool “Reference 
Points to Flowlines” (Laura Hayes and C.M. Johnston, U.S. 
Geological Survey, written commun., 2015) was executed for 
all water-quality sites that identified the most likely flowline 
for each water-quality site, based on the distance between 
the point (water-quality site) and a flowline and the stream 
name when available. If needed, the indexing algorithm 
assigned a new latitude/longitude, moved the point to a 
new, more probable location on the NHDPlus flowline, and 
reported a quality assurance/quality control score referred to 
as the “qaqc_score.” A high qaqc_score indicated a greater 
likelihood of an indexing problem; a score of 0 indicated 
a high degree of confidence in the final indexing result. 
Possible causes of a high qaqc_score include: a mismatch 
in stream name in the site name and the stream name for 
the flowline, if the distance from the site to the flowline 
was greater than 250 meters, if there was a mismatch in 
NHDPlus ComID between the site location’s catchment and 
the flowline’s catchment, if the flowline was a Coastline, or if 
the site was within a 2-dimensional polygon river area in the 
NHDPlus and a higher order stream existed within a buffer 
area of the flowline location, indicating a possible erroneous 
match to a tributary stream.

Once a ComID was associated with a water-quality 
site, other attributes of interest from the NHDPlus were 
associated with the water-quality site, such as drainage area 
and LevelPathID, which identifies the collection of flowlines 
that compose the mainstem of a stream and is used for 
streamgage matching.
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After screening water-quality sites for a minimum 
level of data availability (3 consecutive years of quarterly 
data), an attempt was made to index 21,692 water-quality 
sites to the NHDPlus. Approximately 5 percent could not 
be associated with a NHDPlus flowline (no index), 15 
percent had a qaqc_score greater than 0, and 80 percent had 
a qaqc_score of 0. To evaluate the success of the indexing 
algorithm and the reliability of the qaqc_score, a random 
sample of approximately 300 indexed water-quality sites 
was manually checked. The sample included water-quality 
sites from each of the previous three groups: (1) no index, (2) 
qaqc_score greater than 0, and (3) qaqc_score of 0. Among 
the no-index water-quality sites in the random sample, none 
were meaningfully related to the NHDPlus. All either had 
incorrect latitude/longitude coordinates or were not suitable 
sites for determining water-quality trends in rivers and 
streams (for example, located on buoys in bays or estuaries 
or on intermittent streams). All water-quality sites that 
failed to be associated with the NHDPlus during the initial 
run of the indexing algorithm were eliminated from further 
consideration. Among the remaining randomly checked sites, 
the quality of the index process was directly related to the 
qaqc_score: (1) those with scores of 0 were virtually always 
correct, (2) those with scores of 1 or 2 were sometimes 
correct, and (3) those with scores greater than 2 were almost 
always incorrect. Based on these scores, it was decided 
to accept the index result for water-quality sites when the 
qaqc_score was 0. Of the remaining sites (qaqc_score 
greater than 0), approximately 2,000 were manually checked 
and approximately 1,400 of these were identified as being 
correctly indexed or were manually moved to a new location 
and reindexed to the correct ComID. The result of this entire 
process was a set of 18,786 water-quality sites assigned to an 
NHDPlus flowline and ComID. 

Identifying Groups of Near-Colocated Sites

For sites that had an insufficient record of water-quality 
data for trend analysis (see the “Final Screening for Data 
Coverage” section), an effort was made to combine the 
water-quality data from two sites to increase the period of 
record and (or) sampling frequency to meet the screening 
criteria (compositing). In order to identify sites that could be 
composited, all sites located on the same flowline (ComID) 
of the NHDPlus network and matched with the same 
streamgage were grouped together. All of these water-quality 
sites sharing a common ComID and streamgage match were 
considered for possible combining and were evaluated for 
intervening influences. While no more than two sites were 
combined for any parameter, a group of potential composite 
sites could contain more than two sites. (See the sections 
“Merging Colocated or Neighboring Water-Quality Sites” for 
specific parameter groups for details about the selection of 
composite pairs.) 

Streamgage Selection

The trend analysis required that every water-quality, 
pesticide, and ecology site have an associated continuous 
streamgage; thus, streamgage matching was performed 
that paired each water-quality site or group of sites with a 
streamgage. The goal was to identify the nearest streamgage 
having a streamflow record that encompassed as much of the 
water-quality period of record as possible and that did not have 
intervening influences between the two locations that would 
cause streamflow to be substantially different. In many cases, 
a water-quality site could not be matched to a streamgage, and 
the water-quality site was dropped from further consideration. 
There were variations in streamgage selection process for 
pesticide water-quality sites and ecology sites.

The streamgage-matching process consisted of the 
following broad steps:
1.	 Initial streamgage match and compilation of water-

quality site-streamgage combinations,

2.	 Evaluating intervening influences between water-quality 
site-streamgage combinations,

3.	 Evaluating water-quality site-streamgage combinations 
using screens for streamflow continuity,

4.	 Incorporating manual edits, and

5.	 Selecting the preferred water-quality site-streamgage 
combinations.

Initial Streamgage Match and Compilation of Water-
Quality Site-Streamgage Combinations 

The 18,786 indexed water-quality sites were joined with 
the indexed streamgages (using the NHDPlus LevelPathID) 
to identify water-quality sites and streamgages that shared 
the same stream in the NHDPlus network. Joining sites 
and streamgages by stream (LevelPathID), as opposed to 
flowline (ComID), allowed matches beyond the immediate 
reach that could later be filtered by differences in drainage 
area (described in the following paragraph). The joint result 
was potentially a one-to-many relation, meaning a single 
water-quality site could be associated with zero, one, or many 
streamgages. Of the 18,786 water-quality sites, 15,255 joined 
to one or more streamgages, resulting in 169,498 potential 
water-quality site-streamgage combinations. The drainage area 
associated with each water-quality site and streamgage was 
also captured from the NHDPlus during this process.

To eliminate combinations not useful for this study, 
each water-quality site-streamgage combination was 
evaluated using four screens that assessed drainage area 
agreement between the site and streamgage and basic 
streamflow requirements at the matched streamgage. Water-
quality site-streamgage combinations meeting all of the 
following criteria were retained: (1) there was an absolute 
drainage area difference of less than 10 percent between 
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the water-quality site and the streamgage, (2) streamflow 
was available beginning on or before December 31, 2002 
(the latest start year of a trend period), (3) streamflow was 
available on or after January 1, 2011 (the earliest end year 
of a trend period), and (4) the streamflow record length was 
at least 2,700 days (equivalent to 9 months of streamflow 
per year over 10 years). Of the 15,255 water-quality sites 
that joined to one or more USGS streamgages, 6,647 sites 
passed all four of these criteria, giving 10,518 water-quality 
site-streamgage combinations.

Other programs and projects, including NAWQA, 
National Stream Quality Accounting Network (NASQAN), 
various USGS discrete studies (Hooper and others, 2001; 
Ryberg and others, 2014; and Chanat and others, 2016), and 
CBP, have established long-standing water-quality site-
streamgage combinations. Some of these known alternative 
combinations are identical to those derived using the above 
process; however, other combinations differed or failed one 
or more of the basic screening criteria described above and 
have been filtered out. For comparability and consistency with 
previous trend studies, these known alternative combinations 
were added to the dataset of water-quality site-streamgage 
combinations assembled for this study and used as the 
preferred combination when appropriate. A known alternative 
combination could still be eliminated from the final dataset 
for this study if it failed subsequent screenings, such as 
requirements related to streamflow continuity or number and 
(or) type of water-quality samples.

Evaluating Intervening Influences Between Water-Quality 
Site-Streamgage Combinations

Water-quality site-streamgage combinations were 
manually checked for major intervening influences that 
might cause the streamflow at the water-quality site to be 
substantially different from the streamflow at the streamgage 
location. Please see the “Indentifying Groups of Near-
Colocated Sites” section for a description of the intervening 
influence checking procedure. 

Screening Streamflow Record for Streamflow Continuity

The WRTDS model (Hirsch and others, 2010; Hirsch 
and De Cicco, 2015) used for this trend analysis for nutrients, 
sediment, major ions, and carbon requires a continuous record 
of daily streamflow values that are positive and nonzero; 
therefore, the streamflow records for all streamgages that were 
matched to water-quality sites were screened for continuity, 
magnitude, and sign. For each streamflow record, the 
following information was calculated for each water year: the 
number of days with missing streamflow, the longest sequence 
of consecutive days with missing streamflow, the number 
of days with negative streamflow, and the number of days 
each year with zero streamflow. Each streamflow record was 
required to meet all of the following criteria:

•	 No more than 30 days with missing streamflow 
per year,

•	 No more than 3 consecutive days with missing 
streamflow per year,

•	 No days with negative streamflow,

•	 No more than 30 days with zero streamflow per year,

•	 First complete water year is 2003 or earlier, and

•	 Last complete water year is 2011 or later.
In some cases, a streamflow record failed to meet 

all criteria; however, it could be made usable by deleting 
problematic parts in the older period of record. In those cases, 
the longest usable record was maintained for the site. For 
example, if a streamflow record was complete from water 
years 1972 through 2012, except for the years 1983–85, the 
streamflow prior to water year 1986 would not be used. 

Because the trend method in this study uses the natural 
log of streamflow, there could not be any zero streamflow 
days in the record (Hirsch and De Cicco, 2015). When 
zero streamflow values were present, a very small constant 
equivalent to 0.1 percent of the mean streamflow for the 
site was added to the streamflow value for every day of 
the record (even when the streamflow was not zero). Final 
numerical results from the trend models did not have this 
small streamflow increment subtracted out of streamflow and 
load results because typically these adjustments would be too 
small to have any consequence (Hirsch and De Cicco, 2015). 
To avoid bias in the trend results stemming from this addition, 
a streamflow was excluded when the daily streamflow record 
had more than 30 zero streamflow values in any year of the 
period of record. 

Use of the natural log of streamflow is also problematic 
with negative streamflow values, which can occur in rivers and 
streams with backwater conditions and streamflow reversals 
resulting from tides or wind. Negative streamflow values also 
add complexity to the calculation of loads at a site. For these 
reasons, water-quality sites were not matched to streamgages 
with any negative streamflow values. If another suitable 
nearby streamgage was not available, the water-quality site 
was excluded.

At some of the streamgages, there were periods of time 
with missing daily streamflow values. The WRTDS model will 
not execute if a streamflow record contains missing values; 
missing values will cause the model to fail and need to be 
addressed outside of the model. Missing values occur for a 
variety of reasons. Small gaps, such as those permitted by the 
above criteria, are usually caused by instrument failure and 
can be reasonably estimated from nearby (in time) values. 
Missing streamflow values were estimated using the R 
function “fillMiss” available in the R package “waterData” 
(Ryberg and Vecchia, 2012). The fillMiss function uses a 
structural time series to estimate missing streamflow values. 
Structural time series models decompose a time series in linear 
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combinations of components and are useful for simulating 
datasets having superimposed data of varying frequencies. 
Following estimation, the filled data are smoothed using a 
state-space model. Default values for the function were used 
as described in Ryberg and Vecchia (2012). The function 
was tested on streamflow records with artificially deleted 
values and found to produce reasonable results. Streamflow 
screens for gages used with the pesticide water-quality sites 
and the ecology sites were different from those used with 
water-quality sites being analyzed with WRTDS. See the 
section “Variations in the Streamgage Selection Process for 
Pesticide Water-Quality Sites and Ecology Sites” for details on 
streamflow screens used for these sites.

Selecting the Preferred Water-Quality 
Site-Streamgage Combinations

For water-quality sites being analyzed with WRTDS, 
lists of candidate water-quality site-streamgage combinations 
were developed from the screening process described in steps 
1–4 listed at the beginning of the “Streamgage Selection” 
section. For all water-quality site-streamgage combinations, 
the streamgage must have screened streamflow records from 
at least 2003 to 2011 and no intervening influences between 
the water-quality sites and streamgage. The individual 
water-quality sites in a composite group also must have 
the same ComID and be matched to the same streamgage, 
and there must be no intervening influences between the 
individual water-quality sites that make up the group. These 
additional screens reduced the 10,518 possible water-quality 
site-streamgage combinations to 3,247. There were 3,247 
candidate single water-quality site-streamgage combinations 
and 1,589 candidate composite water-quality site-streamgage 
combinations. These combinations included 2,793 unique 
single water-quality sites and 1,335 potential composite 
water-quality site groups. These candidate water-quality site-
streamgage combinations were also used for selecting gages 
for the pesticide water-quality sites and the ecology sites, 
though there were different considerations for streamgage 
selection at these sites (see the “Variations in the Streamgage 
Selection Process for Pesticide Water-Quality Sites and 
Ecology Sites” section).

Inconsistencies and errors in the information about 
a streamgage, water-quality site, or water-quality site-
streamgage combination were periodically encountered, 
which resulted in multiple iterations through the streamgage-
matching process. As part of this process, many of the 
problematic water-quality site-streamgage combinations 
were individually investigated and information about the 
combination was updated. Common issues that triggered 
investigations included (1) incorrectly indexed water-quality 
sites and streamgages resulting in incorrect drainage areas 
and ComIDs, (2) identification of a previously unrecognized 
intervening influence between a water-quality site and 
streamgage or between individual water-quality sites in a 
group, and (3) incorrect streamgage location (uncommon). 

The results of these individual site investigations were used 
to update the list of candidate water-quality site-streamgage 
combinations.

For single water-quality sites matched with only one 
candidate streamgage, that combination was selected. If a 
water-quality site was matched to more than one candidate 
streamgage, then the closest streamgage (smallest difference in 
drainage areas) having a period of record that most completely 
encompassed the period of record of the water-quality site was 
selected. For example, if a water-quality site had data from 
1989 to 2012 and was paired with two candidate streamgages, 
the closer streamgage having a streamflow record from 
2000 to 2012 and the more distant streamgage having a 
streamflow period from 1987 to 2012, then the more distant 
streamgage would be selected. If the streamflow record at 
both streamgages encompassed the water-quality record, then 
the closer streamgage would be selected. This list of screened 
single water-quality site-streamgage combinations (number 
[n] equals [=] 2,793) was then used to pair single water-
quality sites with a streamgage after data processing for final 
screening of data coverage for WRTDS analyses.

The list of screened potential composite water-quality site 
groups-streamgage combinations was developed separately 
from the single water-quality site-streamgage combinations 
because of the slightly different method used for streamgage 
selection. For potential composite water-quality site groups 
matched with only one candidate streamgage, that combination 
was selected. If a potential composite water-quality site group 
was matched to more than one candidate streamgage, then the 
streamgage with the longest period of record was selected, 
regardless of proximity. This list of screened potential 
composite water-quality site group-streamgage combinations 
(n=1,335 potential composite water-quality site groups, which 
includes 3,191 individual sites) was then used to pair potential 
composite water-quality sites with a streamgage for final 
screening of data coverage for WRTDS analyses. Any water-
quality site (single or composite) not paired with a streamgage 
was not considered for trend analysis.

Variations in Streamgage Selection Process for Pesticide 
and Ecology Sites

Trend analysis of pesticide and ecology data did not use 
the WRTDS model; thus, there were different streamflow 
requirements for pairing these data with streamgages. 
For the water-quality sites with pesticide data, potentially 
useable streamgages were identified using steps 1-2 in the 
“Streamgage Selection” section. The resulting combinations 
included streamgages with complete streamflow records 
and others with potentially problematic streamflow records 
(streamgage did not pass streamflow continuity screens). 
The streamflow data at these potentially useable streamgages 
(n=98) were reassessed because the method for pesticide 
concentration trend analysis, SEAWAVE–Q (Vecchia and 
others, 2008; Ryberg and Vecchia, 2013), requires a complete 
set of daily streamflow observations as well as a leading year 
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of observations to calculate long-term streamflow anomalies; 
the method can allow slightly more consecutive days with 
missing flows than WRTDS. If the streamgage was missing 
more than 0.5 percent of the daily values, then the streamgage 
was dropped from further consideration. If a streamgage was 
missing less than 0.5 percent of the daily values, then the 
missing values were estimated using the fillMiss function 
of the R package waterData (Ryberg and Vecchia, 2012). 
Also, because SEAWAVE–Q uses logarithms during model 
estimation, streamgages with more than 0.5 percent of the 
observed daily streamflows recorded as zeroes were excluded. 
For streamgages with less than 0.5 percent zero flows, on days 
when streamflow was reported as zero, the streamflow was 
set to the minimum recorded value for that particular stream 
(0.01 ft3/s in all cases). Streamgages used in the pesticide trend 
assessment are listed in appendix 1, table 1–2.

For sites with ecology data, the sites and streamgages 
were indexed as described above, but the streamgage-
matching process was primarily manual. Similar to the 
pesticide sites, the method to evaluate trends for ecology sites 
required streamflow records that began prior to the start of the 
ecology period of record to determine antecedent streamflow 
conditions. All but four of the ecology sites have a colocated 
streamgage. The four sites without colocated streamgages use 
data from a nearby streamgage that is within 1 mile upstream 
or downstream from the ecology site (appendix 1, table 
1–3). Flows were estimated for streamgages with missing 
streamflow data using streamflow information from nearby 
streamgages (appendix 1, table 1–4). For specifics about the 
streamgage selection process and streamflow estimation at 
ecology sites see the “Antecedent Hydrology” section of the 
“Ecology Data Preparation” section of this report. Ecology 
sites with colocated streamgages (with complete streamflow 
records) are listed in appendix 1, table 1–5.

Scaling Streamflow Records 

The streamgage-matching process for this study was 
designed to identify colocated or nearby representative 
streamgages for each water-quality monitoring site by 
optimizing the physical proximity of the water-quality 
site and streamgage and the temporal overlap between the 
water-quality data and streamflow data (see the “Streamgage 
Matching” section). The streamgage-matching process only 
allowed water-quality site-streamgage combinations when 
the difference in drainage area between the water-quality 
site and streamgages was less than 10 percent. This process 
resulted in some water-quality site-streamgage combinations 
that were colocated (water-quality and streamflow data 
collected at the same location) and other combinations when 
the water-quality data and streamflow data were collected 
at different but representative locations. As discussed in the 
“Initial Streamgage Match and Compilation of Water-Quality 
Site-Streamgage Combinations” and “Evaluating Intervening 
Influences Between Water-Quality Site-Streamgage 
Combinations” sections, if this difference in drainage area 

was less than 10 percent, and there were no major intervening 
influences affecting the variability of streamflow between 
the locations, it was assumed that the relative, day-to-day 
variability in streamflow was the same at the water-quality 
site and streamgage. When the site and streamgage are not 
colocated, the streamgage drains a land area that differs in 
size from the water-quality site, and the magnitude of the 
streamflow would be expected to be different between the two 
locations, and the load estimates from WRTDS would likely 
be slightly larger or smaller than anticipated because of this 
difference. To acquire more accurate estimations of load from 
WRTDS, daily streamflow data were scaled prior to model 
calibration for water-quality sites that were not colocated with 
their paired streamgage. 

If any of the following criteria were met, a water-quality 
site-streamgage combination was considered to be colocated 
and streamflow data were not scaled:

•	 Water-quality site and streamgage had the same 
identification number,

•	 Water-quality site and streamgage shared an Umbrella 
Site Identifier (ID),

•	 Water-quality site and streamgage had the same 
comID, and the distance between locations was less 
than or equal to 1,000 meters (m),

•	 Percentage difference in drainage area between the 
water-quality site and streamgage was less than 1 
percent, or

•	 Water-quality site-streamgage combination was a 
known alternative combination used by other USGS 
programs and projects.

Flow scaling occurred for water-quality site-streamgage 
combinations that did not meet any of these criteria but still 
had a difference in drainage area of less than 10 percent. 
Streamflows were scaled by multiplying each daily streamflow 
value by the ratio of the water-quality site-drainage area to the 
streamgage-drainage area.

For the most part, the water-quality site-drainage area 
was used for the streamgage-drainage area, except when 
a water-quality site-streamgage combination had different 
identification numbers and were on different comIDs or 
had different identification numbers and were on the same 
comID but more than 1,000 m apart. For these instances, the 
drainage area of the streamgage was calculated as the drainage 
area of the water-quality site plus or minus the difference in 
NHDPlus streamflow accumulation grids (McKay and others, 
2012) between the two locations. These updated streamgage-
drainage areas were used to assess if the water-quality site 
and streamgage were colocated and were appropriate for 
streamflow scaling. For details on the delineation of basin 
boundaries and determination of drainage areas for the water-
quality sites and streamgages see Falcone and others (2017).
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Water-Quality Data Preparation

The initial pool of sites for this study included over 
half a million sites. Because of the large number of sites, it 
was not possible to tailor data-processing choices to each 
individual site; instead, data-processing decisions were made 
at a high level and applied consistently to all sites. This 
approach avoided introducing differences in methodology that 
could invalidate comparisons of the final trend results across 
nationwide sites and parameters. A single set of decisions 
appropriate for all sites was not possible because of the wide 
variation in data characteristics and quality across sites. In 
the end, some sites that could have been salvaged by making 
individual site-based data processing and screening choices 
were excluded from the study. 

The high-level decisions made in this study provide a 
robust approach to data processing and screening when the 
goal is to compare trends regionally and nationally at a large 
number of sites and for a large number of parameters. When 
the goal is to compare trends at a smaller subset of sites and 

for a smaller number of parameters, different choices could 
be possible—either because consistency can be achieved 
in a different manner or because it is reasonable in scope to 
tailor data-processing choices to each site. In these situations, 
trend results that are slightly different in magnitude and (or) 
uncertainty than those from this study could be obtained for 
the same site, parameter, and trend period, but any differences 
should be minor when the underlying data describe the full 
range of conditions at a site and when similar and appropriate 
trend methods are used. The USGS conducts numerous 
trend studies throughout the Nation using smaller subsets 
of sites. Some examples include studies of nutrients and 
sediment trends in tributaries to Chesapeake Bay (Chanat and 
others, 2016); nutrient, organic carbon, and chloride trends 
in tributaries to Long Island Sound (Mullaney, 2016); and 
chloride trends in snow-affected urban streams of the United 
States (Corsi and others, 2015). The generalized process for 
preparing and screening nutrient, sediment, major ion, salinity, 
and carbon data is presented in figure 2A.
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Figure 2.  General steps for data processing and trend screening for A, nutrient, sediment, major ion, and carbon 
parameters; B, pesticide parameters; and C, ecology parameters.
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Paired Sample Evaluation
Similar water-quality parameters that were categorized 

separately in the original data sources were evaluated for 
their potential to be combined into a single dataset for 
use in trend analysis. The goals of combining parameters 
were to (1) increase the number of sites for which trends 
can be calculated, and (2) increase the length of time over 
which trends can be calculated. These goals had to be 
balanced against the possibility of increasing variability 
in the data. Trend analysis evaluates whether there is a 
pattern underlying the variability of the data over time, and 
increasing data variability by combining different fractions 
of the same parameter or different parameters can hinder 
trend determination. Generally, the filtered fraction and the 
unfiltered or unknown fraction of the same parameter were 
evaluated for combination, for example, filtered ammonia and 
unfiltered ammonia; however, some comparisons were made 
between different parameters, for example, filtered nitrite plus 
nitrate and filtered nitrate. Whenever the preferred fraction 
comprised less than 80 percent of the total number of samples 
available for that parameter, the suitability of combining one 
or more nonpreferred fractions with the preferred fraction 
was evaluated. A complete list of evaluated parameters and 
fractions is provided in table 2. 

When parameters were evaluated, one member was 
designated the preferred parameter and the other designated 
the nonpreferred parameter. The filtered fraction was generally 
preferred over total, unknown, or unfiltered fractions, 
except for total phosphorus and Kjeldahl nitrogen, when the 
unfiltered fraction was preferred. If two parameters were 
deemed sufficiently similar to be combined, and both the 
preferred and nonpreferred parameters were available for a 
sample day, the value for the preferred parameter was selected 
during trend analysis

An analysis of paired samples was conducted on the 
parameters being evaluated. Paired samples are those when 
the preferred and nonpreferred parameters were both analyzed 
in a sample collected at the same site on the same date and 
time. If necessary, the two values in each pair of samples were 
rounded to have the same number of significant digits, and all 
paired samples within a parameter group were recensored to a 
common value. The two evaluated parameters often contained 
a number of different censoring levels; the common censoring 
level was chosen as the 90th percentile of all censoring levels 
in a parameter group. Sample pairs when one or both values 
were censored at a value greater than the common censoring 
level were excluded from further analysis. The remaining 
censored values were recoded to the common censoring 
level, and uncensored values less than the common censoring 
level were recoded as censored values at the common 
censoring level.

The paired samples were evaluated using a weight-of-
evidence approach that utilized a quantitative statistical test 
and a qualitative evaluation of the percentage difference 
between paired samples in the group. The parameter 

comparisons were evaluated using all paired data from all sites 
and on a site-by-site basis. All evaluations were conducted on 
the consistently rounded, recensored paired data. A summary 
of the evaluation for each parameter, following the process 
described here, is presented in table 2:

•	 Perform the nonparametric sign test on paired data 
across all sites. The sign test is used to test for 
consistent differences between pairs of observations. 
The sign test was implemented as described in Helsel 
(2005).

•	 Perform the sign test for each site that had 10 or more 
pairs of data (not shown table 2).

•	 Generate a subset of the paired data containing only 
pairs when both values are uncensored.

•	 Perform the sign test on the uncensored paired data 
across all sites.

•	 Perform sign test for each site that had at least 10 
uncensored pairs of data (not shown table 2).

•	 Calculate the percentage difference (pctDiff) between 
the preferred and nonpreferred values for uncensored 
paired data as:

	  	 (1)

where
	 Cnonpref	 is	 the concentration of the nonpreferred 

parameter, and
	 Cpref	 is	 the concentration of the preferred 

parameter.
•	 Determine the percentage of paired data values that 

had (1) pctDiff values less than or equal to (≤) -20 
percent, (2) pctDiff values greater than or equal to (≥) 
20 percent, and (3) pctDiff values between -20 percent 
and 20 percent. It was assumed that laboratory and 
environmental variability typically accounts for less 
than 20 percent of the observed intersample variability, 
a threshold supported by several studies of replicate 
sample quality assurance data collected across the 
country (Rinella and Janet, 1998; Maluk, 2000; Kent 
and Belitz, 2004).

The data available for paired-sample evaluations are 
limited in time, space, and by the collecting agency. Paired 
samples generally were collected for a limited duration, often 
during times when analytical methods were changing or new 
methods being developed. Paired samples might have been 
collected to answer a specific question being posed at a limited 
number of sites or by questions arising within a specific 
agency. For these reasons, and likely others not mentioned, 
the evaluations represent an imperfect window on the data. 
For example, it was not possible to evaluate the temporal 
continuity in the relation between the paired data at a site, and 
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Table 2.  Preferred and nonpreferred parameters, fractions, and summary of the paired sample evaluation metrics. 

[n, number; pctDiff, percentage difference; ≥, greater than or equal to; %, percent; ≤, less than or equal to]

Preferred parameter
Preferred 
fraction

Nonpreferred parameter
Nonpreferred 

fraction

All data

Number of 
agencies

Number  
of sites

Number  
of pairs

Sign test 
p-value

Number of 
sites with 
sign test  

(n pairs ≥ 10)

Number of 
sites with 
sign test 
p-value  
≤ 0.1

Ammonia Filtered Ammonia Unfiltered 13 1,927 63,200 1 1,212 52
Ammonia Filtered Ammonia Total 12 163 8,960 1 127 17
Ammonia Filtered Ammonia Unknown 4 123 6,878 1 42 4
Kjeldahl nitrogen Unfiltered Kjeldahl nitrogen Filtered 13 2,401 109,293 0 1,683 998
Nitrate Filtered Nitrate Unfiltered 5 692 6,324 1 165 27
Nitrate Filtered Nitrate Total 5 85 1,928 1 35 3
Nitrite Filtered Nitrite Unfiltered 8 1,181 20,488 1 623 40
Nitrite Filtered Nitrite Total 5 84 1,561 1 32 8
Nitrite Filtered Nitrite Unknown 1 17 82 1 1 0
Nitrite plus nitrate Filtered Nitrite plus nitrate Unfiltered 11 1,900 60,472 1 1,328 15
Nitrite plus nitrate Filtered Nitrite plus nitrate Total 9 279 3,983 1 43 11
Nitrite plus nitrate Filtered Nitrate Filtered 20 2,297 97,223 0.0035 1,418 456
Orthophosphate Filtered Orthophosphate Unfiltered 8 2,562 51,944 1 1,420 381
Total phosphorus Unfiltered Total dissolved phosphorus Filtered 20 3,557 270,938 0 2,880 2,016
Suspended sediment concentration Suspended Total suspended solids Nonfilterable 1 160 5,877 1 99 28
Suspended sediment concentration Suspended Total suspended solids Suspended 1 5 46 0.9605 3 0
Suspended sediment concentration Suspended Total suspended solids Unknown 3 777 17,601 0 336 156
Chloride Filtered Chloride Unfiltered 1 22 1,473 1 13 0
Chloride Filtered Chloride Total 7 84 4,216 1 60 0
Chloride Filtered Chloride Unknown 1 369 2,715 0 114 13
Sulfate Filtered Sulfate Unfiltered 1 40 689 0.2231 23 5
Sulfate Filtered Sulfate Total 5 22 96 1 3 0
Sulfate Filtered Sulfate Unknown 1 1 8 -- 0 0
Alkalinity Filtered Alkalinity Unfiltered 2 1,300 49,160 0 859 359
Alkalinity Filtered Alkalinity Total 3 208 3,647 1 70 3
Alkalinity Filtered Alkalinity Unknown 1 31 5,751 1 31 0
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Preferred  
parameter

Preferred 
fraction

Nonpreferred 
parameter

Nonpreferred 
fraction

Uncensored pairs of data
Percentage 
of uncen-

sored pairs 
with pctDiff 

within  
≥ 20%

Percentage 
of uncen-

sored pairs 
with pctDiff  
≤ -20%

Percentage 
of uncen-

sored pairs 
with pctDiff 

within  
+/- 20%

Number of 
pairs

Percent  
of un-

censored 
pairs of 

data

Sign  
test p-
value

Number 
of sites 

with  
sign test  
(n pairs 
≥ 10)

Number 
of sites 

with 
sign test 
p-value 
≤ 0.1

Num-
ber of 

samples 
with 

pctDiff  
≥ 20%

Number  
of  

samples 
with 

pctDiff  
≤ -20%

Ammonia Filtered Ammonia Unfiltered 38,289 60.6 1 954 60 9,616 4,034 25.1 10.5 64.4
Ammonia Filtered Ammonia Total 4,925 55.0 1 107 28 826 360 16.8 7.3 75.9
Ammonia Filtered Ammonia Unknown 274 4.0 1 8 3 5 60 1.8 21.9 76.3
Kjeldahl 

nitrogen
Unfiltered Kjeldahl nitrogen Filtered 74,705 68.4 0 1,365 1,067 2,544 41,256 3.4 55.2 41.4

Nitrate Filtered Nitrate Unfiltered 2,751 43.5 0.0197 74 32 73 9 2.7 0.3 97.0
Nitrate Filtered Nitrate Total 1,695 87.9 1 35 3 61 41 3.6 2.4 94.0
Nitrite Filtered Nitrite Unfiltered 7,472 36.5 0 211 55 3,214 271 43.0 3.6 53.4
Nitrite Filtered Nitrite Total 33 2.1 0.0191 1 0 8 0 24.2 0.0 75.8
Nitrite Filtered Nitrite Unknown 18 22.0 1 1 0 0 0 0.0 0.0 100.0
Nitrite plus 

nitrate
Filtered Nitrite plus 

nitrate
Unfiltered 48,376 80.0 1 1,082 16 2,587 1,027 5.3 2.1 92.5

Nitrite plus 
nitrate

Filtered Nitrite plus 
nitrate

Total 3,175 79.7 0.0105 42 21 219 67 6.9 2.1 91.0

Nitrite plus 
nitrate

Filtered Nitrate Filtered 76,872 79.1 0 1,267 562 168 4,342 0.2 5.6 94.1

Orthophosphate Filtered Orthophosphate Unfiltered 38,879 74.8 1 1,076 311 9,474 1,558 24.4 4.0 71.6
Total 

phosphorus
Unfiltered Total dissolved 

phosphorus
Filtered 149,567 55.2 0 2,115 1,950 2,359 110,483 1.6 73.9 24.6

Suspended 
sediment 
concentration

Suspended Total suspended 
solids

Nonfilterable 2,932 49.9 0 64 45 157 1,430 5.4 48.8 45.9

Suspended 
sediment 
concentration

Suspended Total suspended 
solids

Suspended 46 100.0 0.9605 3 0 6 3 13.0 6.5 80.4

Suspended 
sediment 
concentration

Suspended Total suspended 
solids

Unknown 10,854 61.7 0 226 160 1,095 5,550 10.1 51.1 38.8

Chloride Filtered Chloride Unfiltered 1,473 100.0 1 13 0 0 0 0.0 0.0 100.0
Chloride Filtered Chloride Total 3,466 82.2 1 53 0 62 15 1.8 0.4 97.8
Chloride Filtered Chloride Unknown 2,715 100.0 0 114 13 215 584 7.9 21.5 70.6
Sulfate Filtered Sulfate Unfiltered 671 97.4 0.0823 20 5 2 3 0.3 0.4 99.3
Sulfate Filtered Sulfate Total 91 94.8 1 3 0 1 0 1.1 0.0 98.9
Sulfate Filtered Sulfate Unknown 8 100.0 -- 0 0 -- -- -- -- --
Alkalinity Filtered Alkalinity Unfiltered 49,160 100.0 0 859 359 3,604 1,076 7.3 2.2 90.5
Alkalinity Filtered Alkalinity Total 3,647 100.0 1 70 3 23 10 0.6 0.3 99.1
Alkalinity Filtered Alkalinity Unknown 5,751 100.0 1 31 0 0 0 0.0 0.0 100.0
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it was not possible to confirm the validity of combining data 
for each agency from whom data were received. Nevertheless, 
most parameters had tens of thousands of paired samples 
(table 2); collectively, these data provide excellent spatial, 
temporal, and agency coverage. Occasionally, a site, region, 
or agency was found to skew the results of an evaluation, 
and the results were dismissed because of the overwhelming 
lack of problems at the other sites. This logic is consistent 
with other decisions made in other steps of processing and 
filtering the entire water-quality dataset (see section “Nutrient 
Parameters of Interest and Harmonization”). When the paired 
sample evaluations did not show a large magnitude of bias, the 
data were combined even when there was a temporal pattern 
in the data availability for each individual parameter. On the 
other hand, when there was concerning amounts of bias in the 
paired sample comparison, the data were not combined. It was 
expected that egregious issues with combining parameters 
would be caught when evaluating the WRTDS models.

Results and decisions for each parameter group are 
summarized in the following subsections. Within all the 
paired-sample discussions, statistical significance for the sign 
test was defined as a p-value ≤0.1.

Ammonia
Ammonia values with a fraction assigned to filtered 

were compared separately with ammonia values with 
fractions assigned to unfiltered, total, and unknown (table 2). 
The largest number of paired samples was in the parameter 
group composed of filtered and unfiltered ammonia fractions 
(n=63,200), followed by the group composed of filtered and 
total ammonia (n=8,960), and lastly the group composed of 
filtered and unknown ammonia (n=6,878). Relative numbers 
of unique sites and agencies follow the same order, with 
the largest number of each being represented in the group 
composed of filtered and unfiltered fractions.

About half of all the paired samples in the group 
composed of filtered and unfiltered fractions and the group 
composed of filtered and total fractions were uncensored and 
had percentage differences calculated; only 4 percent of the 
pairs in the filtered-unknown comparison were uncensored. 
For all three parameter groups, at least 64 percent of 
percentage differences of uncensored pairs were within plus or 
minus (+/-) 20 percent. For the filtered-unfiltered and filtered-
total parameter groups, the number of percentage differences 
greater than 20 percent exceeded the number less than -20 
percent by about 2 to 1, which indicates a slight bias toward 
higher unfiltered and total ammonia values relative to filtered 
ammonia values. The sample pairs in the filtered-unknown 
parameter group were heavily biased in the opposite direction 
with a 12- to 1-bias favoring pctDiff values less than -20 
percent. A review of the data indicates many of the biased 
values are driven by individual sites or agencies and do not 
reflect the data as a whole.

The sign test on all data pairs and on the uncensored data 
pairs indicated no statistically significant difference among 

values within any of the comparisons (table 2). Site-by-site 
sign tests were not statistically significant at most sites. Most 
pctDiff values were within +/- 20 percent, and the distribution 
of pctDiff values for the two most populous parameter groups 
and at most sites was relatively symmetrical about zero. 
These results demonstrated that these four fractions could be 
combined when a longer or denser record was needed.

Kjeldahl Nitrogen

Kjeldahl nitrogen values with a fraction assigned to 
unfiltered were compared with Kjeldahl nitrogen values with 
a fraction assigned to filtered (table 2). Total and unknown 
Kjeldahl nitrogen fractions were not considered because of 
their ambiguity. The evaluation used 109,293 pairs of data 
from 2,401 sites and 13 agencies.

About 68 percent of all the paired samples were 
uncensored and had percentage differences calculated for 
them. Less than 42 percent of the pctDiff values were within 
+/- 20 percent and also indicated a significant bias toward 
lower values for the filtered fraction, with 55 percent of the 
pairs having a pctDiff value ≤-20 percent and only 3 percent of 
the pairs having a pctDiff ≥20 percent. A review of individual 
sites demonstrates a widespread, systematic bias spanning 
multiple agencies and affecting most sites.

The sign test on all data pairs and on the uncensored 
data pairs indicated a highly statistically significant difference 
among values within the Kjeldahl nitrogen parameter group 
composed of filtered and unfiltered fractions (p=0.0000 for 
tests on both groups). Highly significant differences were also 
observed for individual sites. These results demonstrated that 
these two fractions should not be combined to create a longer 
or denser record.

Nitrate

Nitrate values with a fraction assigned to filtered were 
compared separately with nitrate values with fractions 
assigned to unfiltered and total (table 2). The largest number 
of paired samples was in the parameter group composed of 
filtered and unfiltered nitrate fractions (n=6,324), followed 
by the group composed of filtered and total nitrate (n=1,928). 
Relative numbers of unique sites follow the same order, and 
both parameter groups were represented by five agencies.

About 43 percent of the pairs in the parameter group 
containing unfiltered nitrate and 88 percent of the pairs in 
the group containing total nitrate were uncensored and had 
percentage differences calculated for them. Both parameter 
groups had 94 percent or more of their percentage differences 
within +/- 20 percent, and neither was substantially biased in 
one direction.

The sign test on all data for both parameter groups 
indicated no statistically significant difference among values 
within their respective group. The uncensored values for 
the parameter group containing total nitrate also showed no 
statistically significant difference. The sign test p-value was 
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statistically significant (p=0.0197) for the group containing 
unfiltered nitrate, indicating a bias in the uncensored nitrate 
values for this parameter group. Although pervasive, this bias 
is small; 97 percent of the pairs are within +/- 20 percent of 
one another. Further, the vast majority of the biased sites are 
from one agency.

The sign test on all data pairs indicated no statistically 
significant difference among values within the parameter 
groups. The sign test on uncensored values in the parameter 
group containing unfiltered nitrate indicates a small bias, 
but site-by-site sign tests indicate the issue is largely limited 
to one agency. Nearly all pctDiff values were within +/- 20 
percent for both parameter groups. These results demonstrated 
that these three fractions could be combined when a longer or 
denser record was needed.

Nitrite
Nitrite values with a fraction assigned to filtered were 

compared separately with nitrite values with fractions assigned 
to unfiltered, total, and unknown (table 2). The largest number 
of paired samples was in the parameter group composed of 
filtered and unfiltered nitrite (n=20,488), followed by the 
group composed of filtered and total nitrite (n=1,561), and 
lastly the group composed of filtered and unknown nitrite 
fractions (n=82). Relative numbers of unique sites and 
agencies follow the same order.

About 36 percent of the pairs in the parameter group 
containing unfiltered nitrite fractions, 22 percent of the pairs 
in the parameter group containing unknown nitrite fractions, 
and 2 percent of the pairs in the group containing total nitrite 
fractions were uncensored and had percentage differences 
calculated for them. All three parameter groups had at least 
half of their percentage differences within +/- 20 percent; 
however, the filtered-unfiltered and the filtered-unknown 
groups were both biased toward larger values for the unfiltered 
fraction as indicated by a large number of pairs having pctDiff 
values ≥20 percent.

The sign test on all data pairs indicated no statistically 
significant difference among values within the parameter 
groups. The uncensored values for the parameter group 
containing nitrite of unknown fraction also showed no 
statistically significant difference. The sign test p-value was 
statistically significant for the parameter groups containing 
unfiltered nitrite (p=0.0000) and total nitrite (p=0.0191), 
indicating a bias in the uncensored nitrite values for these 
parameter groups. In both groups, the pctDiff values ≥20 
percent exceed the number of pctDiff values ≤-20 percent 
by a large amount and indicate the uncensored nitrite values 
are biased toward higher unfiltered and total fractions. The 
magnitude of the bias is small, and for the purposes of this 
study, negligible because trends were not determined for 
nitrite alone, but only in conjunction with nitrate (nitrite + 
nitrate); in most samples, the concentration of nitrate exceeds 
that of nitrite by at least one order of magnitude. Additionally, 
many of the biased sites are from one agency.

The sign test on all data pairs indicated no statistically 
significant difference among values within the parameter 
groups. The sign test on uncensored values in the parameter 
groups containing unfiltered and total nitrite indicate a large 
percent bias, but the magnitude of this bias is small given 
the generally small concentrations of nitrite detected. This 
represents less than 60 percent of all data pairs due to the 
highly censored nature of the nitrite data. Considering just 
the uncensored values, more than half of the pctDiff values 
were within +/- 20 percent for all three parameter groups. 
These results demonstrated that these four fractions could be 
combined when a longer or denser record was needed.

Nitrite Plus Nitrate
Nitrite plus nitrate values with a fraction assigned to 

filtered were compared separately with nitrite plus nitrate 
values with fractions assigned to unfiltered and total (table 
2); filtered nitrite plus nitrate values also were compared with 
filtered nitrate values (table 2). The largest number of paired 
samples was in the parameter group composed of filtered 
nitrite plus nitrate and filtered nitrate (n=97,223), followed 
by the group composed of filtered and unfiltered nitrite plus 
nitrate fractions (n=60,472), and lastly by the group composed 
of filtered and total nitrite plus nitrate (n=3,983). Relative 
numbers of unique sites and agencies follow the same order.

About 79 percent of the pairs in all three parameter 
groups were uncensored and had percentage differences 
calculated for them. All three parameter groups had 91 percent 
or more of their percentage differences within +/- 20 percent.

The sign test for the parameter group containing filtered 
nitrite plus nitrate and filtered nitrate indicated statistically 
significant differences for pairs containing all the values 
(p=0.0035) and pairs containing only uncensored values 
(p=0.0000) and is due to the presence of nitrite in one and 
not the other of the pair. Nitrite constitutes a small percentage 
of the filtered nitrite plus nitrate value but introduces a 
measureable difference between the pairs of values.

The sign test for the parameter group containing filtered 
and unfiltered nitrite plus nitrate was highly insignificant for 
pairs containing all the values (p=1.0000) and pairs containing 
only uncensored values (p=1.0000). The sign test for the 
parameter group containing filtered and total nitrite plus 
nitrate was not significant for pairs containing all the values 
(p=1.0000) but was significant for pairs containing only 
uncensored values (p=0.0105). Sites from one agency appear 
to be driving the significant sign test results.

The sign test on all nitrite plus nitrate data pairs indicated 
no statistically significant difference among values within 
the parameter groups. However, the sign test comparing 
the parameter group containing filtered nitrite plus nitrate 
and filtered nitrate indicated a significant difference. This 
difference is small because of the presence of nitrite and is 
considered negligible considering the relative magnitude 
of nitrite to the total nitrite plus nitrate value in most cases. 
The sign test on uncensored values in the parameter group 
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containing filtered and total nitrite plus nitrate indicates 
a small bias, but site-by-site sign tests indicate the issue 
is largely limited to one agency. Nearly all pctDiff values 
were within +/- 20 percent for all four parameter groups. 
These results demonstrated that these four fractions could be 
combined when a longer or denser record was needed.

Orthophosphate

Orthophosphate values with a fraction assigned to 
filtered were compared with orthophosphate values with a 
fraction assigned to unfiltered (table 2). No total or unknown 
orthophosphate fractions were considered because of their 
ambiguity. The evaluation used 51,944 pairs of data from 
2,562 sites and eight agencies.

About 75 percent of all the paired samples were 
uncensored and had percentage differences calculated for 
them. Although more than 71 percent of the pctDiff values 
were within +/- 20 percent, the remaining values indicated 
a significant bias toward higher values for the unfiltered 
fraction, with 24 percent of the pairs having a pctDiff value 
≥20 percent and only 4 percent of the pairs having a pctDiff 
≤-20 percent. A review of individual sites demonstrates a 
widespread, systematic bias spanning multiple agencies and 
affecting most sites. The sign test on all data pairs and on the 
uncensored data pairs indicated no statistically significant 
difference among values within the orthophosphate parameter 
group composed of filtered and unfiltered fractions; however, 
site-by-site sign tests were statistically significant at about 30 
percent of the sites.

Approximately 30 percent of individual sites fail the sign 
test, and nearly 25 percent of pctDiff values are biased toward 
higher values for the unfiltered fraction (≥20 percent). These 
results demonstrated that these two fractions should not be 
combined to create a longer or denser record.

Total Phosphorus

Total phosphorus values with a fraction assigned to 
unfiltered were compared with total dissolved phosphorus 
values with a fraction assigned to filtered (table 2). Total and 
unknown total phosphorus fractions were not considered 
because of their ambiguity. The evaluation used 270,938 pairs 
of data from 3,557 sites and 20 agencies.

About 55 percent of all the paired samples were 
uncensored and had percentage differences calculated for 
them. Less than 25 percent of the pctDiff values were within 
+/- 20 percent, and they also indicated a significant bias 
toward lower values for the filtered total phosphorus fraction, 
with about 74 percent of the pairs having a pctDiff value 
≤-20 percent and only 2 percent of the pairs having a pctDiff 
≥20 percent. A review of individual sites demonstrates a 
widespread, systematic bias spanning multiple agencies and 
affecting most sites.

The sign test on all data pairs and on the uncensored 
data pairs indicated a highly statistically significant difference 
among values within the total phosphorus parameter group 

(p=0.0000 for tests on both groups). Highly significant 
differences were also observed for individual sites. These 
results demonstrated that these two fractions should not be 
combined to create a longer or denser record.

Suspended Sediment

Suspended sediment concentration (SSC) values with a 
fraction assigned to suspended were compared separately with 
total suspended solids (TSS) values with fraction assigned 
to nonfilterable, suspended, and unknown (table 2). The 
largest number of paired samples was in the parameter group 
composed of SSC and unknown TSS (n=17,601), followed by 
the group composed of SSC and nonfilterable TSS (n=5,877), 
and lastly by the group composed of SSC and TSS (n=46). 
Relative numbers of unique sites and agencies follow the same 
order. The latter group consists of just five sites from one 
agency and will not be considered further because of the small 
sample size; SSC and nonfilterable TSS were not combined.

More than half of all the paired samples were uncensored 
and had percentage differences calculated for them. The two 
parameter groups had less than 46 percent of their percentage 
differences within +/- 20 percent, indicating a high degree 
of incompatibility between the fractions in both parameter 
groups. At least 48 percent of the pctDiff values were ≤-20 
percent, which also points to a large bias in the paired data. 

The sign test on all data pairs for the unfilterable 
TSS parameter group indicated no statistically significant 
difference among values within the parameter group 
(p=1.0000); the sign test on the uncensored values was highly 
significant (p=0.0000), and 70 percent of the individual sites 
failed the sign test at alpha [α]=0.1. The sign test for all data 
and uncensored data pairs in the parameter group containing 
the unknown TSS fraction was highly significant (p=0.0000).

Most results from the sign test indicate statistically 
significant differences between the evaluated parameter 
groups. In addition, fewer than 46 percent of all the pctDiff 
values were within +/- 20 percent and more than 48 percent 
were ≤-20 percent, indicating a substantial bias in the paired 
data. These results demonstrated that these two fractions 
should not be combined to create a longer or denser record, 
and that any other TSS values should be evaluated separately 
from SSC values. This is consistent with the findings of 
the study by Gray and others (2000) that concentrations of 
suspended sediment and TSS are incompatible, particularly in 
samples having a large fraction of sand-sized material.

Chloride

Chloride values with a fraction assigned to filtered were 
compared separately with chloride values with fractions 
assigned to unfiltered, total, and unknown (table 2). The 
largest number of paired samples was in the parameter group 
composed of filtered and total chloride (n=4,216), followed 
by the group composed of filtered and unknown chloride 
(n=2,715), and lastly the group composed of filtered and 
unfiltered chloride fractions (n=1,473). The largest number of 
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agencies was in the parameter group containing total chloride, 
and the largest number of sites was in the parameter group 
containing chloride with an unknown fraction; all sites in the 
latter group were from one agency.

Almost all of the paired samples were uncensored and 
had percentage differences calculated for them. The parameter 
group containing the unknown chloride fraction was biased 
based on sign-test results, but more than 70 percent of the 
pctDiff values were still within +/- 20 percent; all of these data 
were from one agency. A site-by-site evaluation of the pairs 
containing unknown chloride fractions indicates most sites 
were not biased, but about 10 percent of the sites exhibited a 
bias. Most sites exhibiting a bias have fewer than 16 samples, 
and it is difficult to determine if the bias is real or the result of 
a small sample size. Sign tests at most of the sites exhibiting 
bias are not significant. The other two parameter groups (total 
and unfiltered) had 97 percent or more of their percentage 
differences within +/- 20 percent, indicating a high degree of 
compatibility between the fractions in the parameter groups.

The sign test on all data pairs and on the uncensored 
data pairs for groups containing unfiltered and total chloride 
indicated no statistically significant difference among values 
within the parameter groups. The sign test was statistically 
significant for the parameter group containing the unknown 
fraction but was driven by data from one agency. Site-by-site 
sign tests were not statistically significant at most sites. Nearly 
all pctDiff values were within +/- 20 percent for the unfiltered 
and total parameter groups. These results demonstrated that 
these four fractions could be combined when a longer or 
denser record was needed.

Sulfate

Sulfate values with a fraction assigned to filtered were 
compared separately with sulfate values with fractions 
assigned to unfiltered, total, and unknown (table 2). The 
largest number of paired samples was in the parameter group 
composed of filtered and unfiltered sulfate (n=689), followed 
by the group composed of filtered and total sulfate (n=96). 
The group containing filtered and unknown sulfate did not 
have enough data (n=8) to run the sign test or compute pctDiff 
values. The largest number of agencies was in the parameter 
group containing total sulfate, while the largest number of 
sites was in the parameter group containing sulfate with an 
unfiltered fraction; all sites in the latter group were from one 
agency.

Almost all of the paired samples were uncensored and 
had percentage differences calculated for them. The two 
parameter groups had 98 percent or more of their percentage 
differences within +/- 20 percent, indicating a high degree of 
compatibility between the fractions in the parameter groups.

The sign test on all data pairs for both parameter groups 
indicated no statistically significant difference among values 
within the parameter groups (unfiltered group p=0.2231; 
total group p=1.0000). The sign test for uncensored data 
pairs in the parameter group containing unfiltered sulfate was 

significant (p=0.0823), but the test on the group containing 
total sulfate was not (p=1.0000). Site-by-site p-values greater 
than 0.1 at 16 of 20 sites indicate the issue of statistically 
significant differences in values is not widespread; however, 
the small number of sites is not a robust sample to evaluate the 
importance of the sign test results.

Site-by-site sign tests were not statistically significant 
at most sites, although the sign test conducted on uncensored 
data for the parameter group containing unfiltered sulfate 
indicates a bias may be present. However, 98 percent of all 
the pctDiff values were within +/- 20 percent for the unfiltered 
and total parameter groups, which indicates that if a bias does 
exist, it is small. These results demonstrated that these three 
fractions could be combined when a longer or denser record 
was needed.

Alkalinity

Alkalinity values with a fraction assigned to filtered were 
compared separately with alkalinity values with fractions 
assigned to unfiltered, total, and unknown (table 2). The 
largest number of paired samples was in the parameter group 
composed of filtered and unfiltered alkalinity (n=49,160), 
followed by the group composed of filtered and unknown 
alkalinity (n=5,751), and lastly the filtered and total group 
(n=3,647). The largest number of agencies was in the 
parameter group containing total alkalinity, while the largest 
number of sites was in the parameter group containing 
alkalinity with an unfiltered fraction.

All of the paired alkalinity samples were uncensored 
and had percentage differences calculated for them. The three 
parameter groups had 90 percent or more of their percentage 
differences within +/- 20 percent, indicating a high degree of 
compatibility between the fractions in the parameter groups. 
The unknown and total groups had more than 99 percent of 
their sites within +/- 20 percent. For the filtered-unfiltered 
group, sites having values of pctDiff ≥20 percent exceeded 
those with values ≤-20 percent by a factor of three. At 65 
percent of the sites having a large number of pctDiff values 
≥20 percent, the median concentration was less than 50 mg/L, 
which indicates that dilute sites are responsible for much of 
the observed bias.

Because there were no censored values, the sign test 
was identical for all data and uncensored data pairs. The sign 
test for the parameter groups containing total and unknown 
alkalinity samples indicated no statistically significant 
difference among values within the parameter groups 
(p=1.0000). The sign test on the parameter group comparing 
filtered and unfiltered alkalinity was significant (p=0.00000: 
p-values ≤0.1 occurred at 359 sites (28 percent of the total 
number of sites). Visual inspection of data from a subset of 
sites with significant p-values indicated that most of the paired 
alkalinity values were within 20 percent of one another. Sites 
were visually spot checked, and a small bias toward higher 
unfiltered values was noted at some sites. Obviously bad or 
misentered data rarely were identified as the cause of the bias. 
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The observed bias at sites with statistically significant p-values 
is likely related to the bias in high pctDiff values discussed 
previously—in diluted waters the bias results in pctDiff 
values ≥20 percent, but at higher alkalinity concentrations, the 
pctDiff is <20 percent but still results in a significant p-value 
when the sign test is applied. These results demonstrated 
that these four fractions could be combined when a longer or 
denser record was needed.

Replicate Evaluation
The criteria used to determine the validity of 

combining parameters of differing fractions were applied to 
environmental replicate data collected by NAWQA between 
1992 and 2012 for the purposes of substantiating the decisions 
to combine or not combine parameters for trend analysis. 
Most of the environmental replicate samples collected by 
NAWQA were split replicates—two aliquots of water were 
taken from the same compositing vessel and submitted for 
analysis. A comparison of these values provides insight 
into the sample processing and analytical variability. The 
percentage difference was calculated for the replicate data in 
the same manner as it was for the data used to evaluate paired 
samples. Arbitrarily, the environmental sample was denoted 
the preferred sample, and the replicate sample was treated as 
the nonpreferred sample. The results of this replicate analysis 
are reported in table 3.

The variability of split replicate samples of the same 
parameter and fraction should be smaller than the variability 
observed in sample pairs of different fractions, such as those 
in the data under consideration for combining (table 3). If 
the variability of the paired data under consideration for 
combining is substantially greater than the variability observed 
for the NAWQA replicate pairs, then that observation lends 
support to a decision not to combine those data pairs. On the 
other hand, if the variability of the data pairs is similar to 
the variability of the replicates, that would lend support to a 
decision to combine those pairs. As an example, 97.1 percent 
of the NAWQA replicates for filtered nitrite plus nitrate had 
a percentage difference between -20 percent and plus (+)20 
percent compared to 92.5 percent of the pairs of filtered nitrite 
plus nitrate and unfiltered nitrite plus nitrate had a percentage 
difference between -20 percent and +20 percent. As expected, 
a lower percentage, but not a substantially lower percentage, 
of the filtered-unfiltered pairs fell within the -/+ 20 percent 
window, which indicates that the variability associated with 
the filtered-unfiltered pair is only slightly greater and not 
enough to support keeping the separate datasets. 

The USGS NAWQA replicates were evaluated for filtered 
ammonia, Kjeldahl nitrogen, filtered nitrite plus nitrate, total 
phosphorus, filtered orthophosphate, SSC, filtered chloride, 
and filtered sulfate. In all cases when comparisons could be 
made between the replicate data and the paired sample data, 
the conclusions reached in the paired sample evaluation were 
substantiated. Table 3 summarizes the similarity of the two 
methods for evaluating the percentage of paired samples 

Table 3.  Percentage of uncensored data pairs having 
percentage difference values less than 20 percent and greater 
than -20 percent.

[USGS, U.S. Geological Survey; pctDiff, percentage difference; Rep, replicate 
sample; Env, environmental sample; nonPref, nonpreferred fraction; Pref, 
preferred fraction]

Parameter

USGS 
replicate 
samples, 
1992–2012

Paired samples, 
values are for 
the constitu-

ent group with 
largest number 
of uncensored 

pairs

Paired- 
sample  

decision

Ammonia 83.0 64.4 Combine

Kjeldahl nitrogen 81.0 41.4 Do not combine

Nitrite plus 
nitrate

97.1 92.5 Combine

Orthophosphate 90.3 71.6 Do not combine

Total phosphorus 87.8 24.6 Do not combine

Suspended 
sediment 
concentration

72.2 38.8 Do not combine

Chloride 99.3 97.8 Combine

Sulfate 98.8 99.3 Combine

pctDiff calculated as
(1) USGS replicate samples: 100*(Rep-Env)/Env
(2) Paired samples: 100*(nonPref-Pref)/Pref

having pctDiff values less than 20 percent and greater than 
-20 percent. The table is intended to broadly show the two 
methods corroborate one another but does not capture the 
interpretive nuances used to evaluate the paired samples for 
combining.

Nutrient Parameters of Interest 
and Harmonization

The target nutrient parameters for trend analysis 
were ammonia, nitrate (nitrate and nitrite plus nitrate), 
orthophosphate, total nitrogen (N), and total phosphorus. 
Because these were sometimes reported directly and 
sometimes calculated from other parameters, all available 
data initially were retained for ammonia, dissolved nitrogen, 
dissolved phosphorus, Kjeldahl nitrogen, nitrate, nitrite, nitrite 
plus nitrate, organic nitrogen, orthophosphate, particulate 
nitrogen, particulate phosphorus, total nitrogen, and total 
phosphorus. Parameters that clearly were not a variation 
on the target parameters (for example “Ammonia Nitrogen 
Transport” and “Nitrogen Gas Saturation”) were excluded. 
Numerous parameters were ambiguous and were used only 
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when a data source specified their interpretation of the 
parameter (for example, some sources specified that they 
used “Nitrogen Ion” to mean total nitrogen,” while others 
used “Nitrogen Ion” but did not specify their interpretation). 
Challenges with combining nutrient data from multiple 
sources for secondary uses, like this study, are described in 
Sprague and others (2017).

Naming conventions for a single parameter varied widely 
among data sources. For example, all of the variations on 
nitrate are shown in appendix 2, table 2–1. Numerous steps 
were taken to harmonize different parameter names that 
represented the same parameter. In many cases, the chemical 
represented by the parameter name was not clear. Metadata 
critical to precisely identifying and quantifying each data 
value—such as filtration status (fraction), units, and chemical 
form (molecular or elemental)—were often incomplete, 
rendering the data value ambiguous. When critical metadata 
were missing, the data were not used. In select cases, agencies 
were contacted to fill in metadata gaps.

One primary point of ambiguity that often could not be 
resolved without supporting metadata specifying whether 
a sample was filtered or unfiltered was the use of “total” in 
nutrient parameter names. Total was used two ways among 
data sources: (1) to represent the inclusion of multiple species, 
such as when ammonia and organic nitrogen were summed to 
give total Kjeldahl nitrogen, or when all dissolved phosphorus 
species were included in the determination of total dissolved 
phosphorus; and (2) to represent an unfiltered sample. Some 
values were clearly identified as being both summed and 
unfiltered (for example, total Kjeldahl nitrogen, unfiltered); 
others were clearly identified as being summed and filtered 
(for example, total Kjeldahl nitrogen, filtered or dissolved 
Kjeldahl nitrogen); others could only have been unfiltered and 
not summed, because they could not have been derived as a 
sum (for example, total nitrite). Values with these descriptors 
were retained; however, many other values were ambiguously 
described. These ambiguous values potentially could have 
been unfiltered and (or) derived as a sum, but clarifying 
metadata were not provided (for example, total Kjeldahl 
nitrogen, filtration status unknown). In such cases, total as part 
of the parameter name was assumed to mean unfiltered when a 
given source reported all of their parameter fractions as either 
total or filtered. If a source reported some parameter fractions 
as total and some as unfiltered, or if they reported parameters 
as just total, no assumption was made and all data with total as 
the fraction were excluded. Whenever possible, assumptions 
were verified with the data source.

Any data values that were reported without units, such 
that it could not be unambiguously determined whether 
they were reported in milligrams per liter, micrograms per 
liter, or some other unit, were excluded. Any data values 
that were reported without form, such that it could not be 
unambiguously determined whether they were reported in 
elemental form (for example, nitrate as nitrogen [as N]) or 
in molecular form (for example, nitrate as NO3

-) also were 

excluded. In both cases, the choice of units or form commonly 
could substantially alter the value. For example, a nitrate 
concentration reported as NO3

- would be more than four times 
larger than the same nitrate concentration reported as N.

Parameters reported as variants on the names 
soluble reactive phosphorus (SRP), orthophosphate, and 
orthophosphate-plus-hydrolyzable-phosphate were treated 
as being equivalent, and all were renamed orthophosphate. 
Operationally, SRP is determined using a spectrophotometric 
(colorimetry) analysis that measures orthophosphate as well as 
a small amount of other polyphosphates that are unavoidably 
hydrolyzed during the analysis. Most laboratories employ the 
spectrophotometric method in the measurement of what is 
alternatively called orthophosphate; thus, orthophosphate and 
SRP are operationally equivalent when the spectrophotometric 
method is used (Jarvie and others, 2002). Operationally, 
orthophosphate is not the same as SRP when orthophosphate 
is determined using ion chromatography because there is 
no inadvertent hydrolysis of other polyphosphates during 
the ion chromatography analysis (Westland and Boisclair, 
1974). Because the amount of inadvertent polyphosphate 
hydrolysis during the spectrophotometric method typically 
is very small, orthophosphate determined using the 
spectrophotometric method, orthophosphate determined 
using ion chromatography, and SRP determined using 
spectrophotometry are considered to be equivalent for this 
study. Operationally, orthophosphate-plus-hydrolyzable-
phosphate is not the same as either SRP or orthophosphate 
because it includes an additional deliberate hydrolysis step that 
can hydrolyze condensed polyphosphates (Jarvie and others, 
2002). However, the amount of condensed polyphosphates 
typically is so low in natural waters (Kornberg and others, 
1999) that orthophosphate-plus-hydrolyzable-phosphate also 
was considered to be equivalent to SRP and orthophosphate in 
this study.

The parameter phosphate was more complicated. 
Variations on the name (such as phosphate, total phosphate, 
or phosphate-phosphorus) can be used to represent either 
orthophosphate or total phosphorus, depending on the way 
total phosphorus is analyzed in the laboratory. A water sample 
that is collected in the field for total phosphorus is analyzed 
in a laboratory by converting all forms of phosphorus in the 
sample to phosphate. As a result, some agencies report the 
value as total phosphorus (based on the field perspective), 
but other agencies report the same value as phosphate or total 
phosphate (based on the laboratory perspective). In STORET, 
phosphate-phosphorus is used to represent total phosphorus 
(U.S. Environmental Protection Agency, 2015). Outside of 
STORET, some agencies appeared to follow this convention 
and used a variation on the name phosphate to represent total 
phosphorus. Other agencies used a variation on the name 
phosphate to represent a variation on orthophosphate. In many 
cases, it was unclear what the parameter name phosphate was 
intended to represent. When the meaning of phosphate could 
not be determined, the associated data were not used.
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When the parameter name phosphate could 
unambiguously be determined to mean a variation on 
orthophosphate, it often was unclear whether the analysis 
included polyphosphate in addition to orthophosphate. 
Because polyphosphate is highly reactive and concentrations 
in most streams are likely to be very small compared to 
orthophosphate concentrations (Kornberg and others, 1999), 
phosphate was assumed to be equivalent to orthophosphate. 

 Concentrations of nitrite in streams are likely to be very 
small compared to nitrate concentrations (Dubrovsky and 
others, 2010), because nitrite is unstable in aerated waters 
(Hem, 1984). Unlike orthophosphate and polyphosphate, 
nearly 100,000 paired nitrate and nitrite plus nitrate samples 
were available in the dataset; these paired samples were 
used to evaluate the relative contribution of nitrite (assumed 
to be the difference between nitrite plus nitrate and nitrate) 
to nitrite plus nitrate in a wide variety of streams across the 
United States. Detailed results of the paired statistical test 
between nitrite plus nitrate and nitrate are presented in table 2. 
In general, the median percentage difference between paired 
nitrate and nitrite plus nitrate samples was about 1 percent; 
94 percent of uncensored nitrate and nitrite plus nitrate pairs 
had a percentage difference within 20 percent. Based on these 
results, nitrate and nitrite plus nitrate were considered to be 
indistinguishable in this study, and data for both parameters 
were combined. When nitrate and nitrite plus nitrate results 
were present in a single sample, the priority for use in trend 
analysis was nitrite plus nitrate, then nitrate. The resulting data 
are collectively referred to as “nitrate.”

All remaining nutrient concentration data with complete 
and unambiguous metadata were converted to milligrams 
per liter as nitrogen or as phosphorus (as P). Converted 
concentrations were rounded to the number of decimal places 
in the original value, with the exception of values converted 
from micrograms per liter to milligrams per liter (because of 
the possibility of rounding a converted value to zero).

Nutrient Data Processing

In order to reduce the nutrient dataset to a more 
reasonable size and to eliminate sites with very limited data 
that were not suitable for trend analysis, only sites that had at 
least 3 years of consecutive nutrient data with at least quarterly 
sampling initially were retained. Details on how quarters were 
defined can be found in the “Coverage of Changing Seasons” 
section in this report. 

Unfiltered and Filtered Fractions

The USGS Office of Water-Quality (OWQ) Technical 
Memorandum 93–04 (accessed April 1, 2015, at http://water.
usgs.gov/admin/memo/QW/qw93.04.html) states that prior 
to December 2, 1992, concentrations of total (unfiltered) 
and dissolved (filtered) nitrite, nitrite plus nitrate, ammonia, 
and orthophosphate were determined simultaneously using 
a four-channel, continuous flow, colorimetric analyzer. No 
digestion was performed on unfiltered samples prior to 

analytical determinations, and thus analytical procedures were 
identical for dissolved and total determinations. Moreover, 
because unfiltered samples with large concentrations of solids 
could foul the four-channel analyzer, an unknown number 
of total samples were laboratory filtered at the discretion of 
the analyst. Records of those laboratory filtrations were not 
kept, and the results were reported as a total concentration 
prior to that date; therefore, no analytical basis exists 
for a distinction between dissolved and total fractions. A 
subsequent statistical comparison of paired total and dissolved 
samples collected during calendar year 1989 found that 
the median concentrations were not significantly different 
at the 95-percent confidence level. The conclusion in the 
memorandum was that unfiltered and filtered concentrations 
of nitrite, nitrite plus nitrate, ammonia, and orthophosphate 
previously reported by the National Water Quality Laboratory 
(NWQL) were statistically indistinguishable. (By extension, 
theoretically this would also apply to nitrate, which is 
calculated as the difference between nitrite plus nitrate and 
nitrite.)

Because some USGS data may have been analyzed 
with different laboratory methods during the period before 
December 2, 1992 (that did not use the four-channel analyzer), 
and because a similar evaluation of paired filtered and 
unfiltered nutrient data was not available from all non-USGS 
laboratories, paired filtered and unfiltered nitrite, nitrate, nitrite 
plus nitrate, ammonia, Kjeldahl nitrogen, and orthophosphate 
data from all sources represented in the dataset were further 
examined as part of the data processing for this study. Paired 
filtered and unfiltered concentrations for each of the above 
parameters were compared collectively (all sources pooled 
together). Results are presented in the “Paired Sample 
Evaluation” section of this report and in table 2. 

Based on the results in table 2 and in the OWQ 
memorandum 93–04, filtered and unfiltered nitrite, nitrate 
plus nitrite, nitrate, and ammonia concentrations were 
considered to be indistinguishable in this study, and data for 
the fractions were combined for each parameter. Data for these 
parameters also were accepted from agencies that did not 
specify a fraction in the metadata because either fraction was 
acceptable. When filtered, unfiltered, and (or) missing fraction 
results were present in a single sample, the preferred order for 
use in trend analysis was filtered, then unfiltered, and missing. 

Based on the results in table 2, filtered and unfiltered 
orthophosphate concentrations were not treated as 
indistinguishable. The difference between paired filtered and 
unfiltered orthophosphate concentrations may have resulted 
from the inadvertent inclusion of organic phosphorus during 
the laboratory analysis of orthophosphate (Tarapchak and 
others, 1982). Because some agencies collected only filtered 
orthophosphate samples and others collected only unfiltered 
orthophosphate samples, both types of samples were retained 
as separate parameters. They were not combined at an 
individual site because switching between the two over time 
could induce an artificial trend. Orthophosphate data for which 
no fraction was reported were excluded.

http://water.usgs.gov/admin/memo/QW/qw93.04.html
http://water.usgs.gov/admin/memo/QW/qw93.04.html
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For nutrient parameters that potentially have some 
particulate component—including total nitrogen, Kjeldahl 
nitrogen, organic nitrogen, and total phosphorus—filtered 
and unfiltered data were not treated as indistinguishable and 
were retained as separate parameters. Data without a reported 
fraction were excluded. For other nutrient parameters that 
have only a particulate component—particulate nitrogen 
and particulate phosphorus—only data with particulate or 
nonfilterable in the parameter name or given as the fraction 
were used. Data reported as filtered or for which no fraction 
was reported (or could be deduced from the name) were 
excluded. 

Paired filtered and unfiltered nutrient values also 
were used for a more general quality screen. All paired 
filtered and unfiltered data from a given source were pooled 
together by parameter. If filtered values exceeded unfiltered 
values by more than 25 percent in more than 50 percent of 
paired samples, there was a high likelihood of laboratory 
performance issues; therefore, all filtered and unfiltered data 
from that source were excluded for that parameter. This 
comparison was made for all target nutrient parameters, as 
well as all other nutrient parameters used in the calculation of 
the target nutrient parameters. Censored data were excluded 
from this comparison to avoid comparisons of data with 
different detection limits.

Discrete Samples

Discrete samples were used in the study to avoid 
introducing sampling inconsistency. Composite samples—
multiple discrete samples collected over an extended period of 
time (often more than 24 hours or throughout a storm event) 
that were composited together into a single sample— were 
excluded from the study.

Samples Analyzed in the Field

To maintain basic comparability in precision and 
accuracy of analytical determinations, data were restricted to 
samples analyzed in laboratories. Samples that were known to 
be analyzed using field chemistry kits were excluded. Remark 
codes on the samples (for example, Virginia Department of 
Environmental Quality remark code H: “Value based on field 
kit determination; may not be accurate”) and parameter codes 
(for example, USGS parameter code 99120: “Ammonia, water, 
filtered, field, milligrams per liter as nitrogen”) were used to 
identify samples that were analyzed in the field. Parameter 
names for parameters with no associated parameter code also 
were used to identify samples that were analyzed in the field 
(for example, “Nitrogen, Ammonia, Hach TNT” and “Ortho 
Phosphate, Hach method 8048”). Information on whether 
the samples were analyzed in the field or laboratory was not 
always provided, so some samples that were analyzed in the 
field may have been inadvertently retained. 

Remark Code Harmonization

There were more than 1,400 unique remark codes in 
the original dataset, which included all parameters. Many of 
these were not defined, and many others were ambiguously 
defined. Data with undefined or ambiguous remark codes 
were excluded. Remark codes indicating poor data quality (for 
example, “Contamination present in the sample”), censored 
data, or data below a laboratory detection limit were of interest 
to this study. Data with one or more remark codes indicating 
poor data quality were excluded. Data with a remark code 
indicating laboratory censoring were retained. There were 
about 65 unique remark codes in the data indicating laboratory 
censoring; these were unified under a single remark code of 
“<.” In some cases, there was no remark code provided, but a 
comment field associated with a data value indicated that the 
value was censored; these values also were given a remark 
code of “<.”

Some sources reported a censored remark code for an 
observation but did not report an associated value. When 
more than 1 percent of the data for a parameter at a site had 
a censored remark code but no values, then all of the data 
(censored and uncensored) for that site and parameter were 
excluded. When less than 1 percent of the data for a parameter 
at a site had a censored remark code with a missing value and 
censored values were reported for other observations, then 
the missing censored values were set to the reported censored 
value that was closest in time for that site and parameter. 

Other dataset sources did not have any nutrient data 
values with remark codes to indicate censoring. When 
contacted, a number of these sources confirmed that some of 
the data were censored, but data with remark codes were not 
uploaded to STORET and (or) their data with remark codes 
were not made publicly available through their own databases. 
The reasons for this practice are unknown, but it creates the 
potential for substantially biased analyses. When no censored 
remark codes were present for any data from a given source, 
all of the data from that source were excluded. Some sources 
furnished data through both the STORET database and their 
own database. On occasion, remark codes for some agencies 
were present in one of these databases but not the other. For 
evaluating overall censoring, data from the two databases 
were evaluated separately; as a result, for some sources, data 
from one database were excluded while data from the other 
database were retained. The true amount of censoring in any 
excluded data could not be determined; therefore, the amount 
of bias in the final trend results could not be determined if data 
from those sources were used. 

In some cases, when an agency reported data with 
censored remark codes, units were provided for uncensored 
data but not for censored data. The reasons for this practice are 
unknown, but it creates the potential for substantially biased 
analyses if only the censored data were excluded because 
the units were missing. If all of the missing units were for 
censored data for a parameter from a given source, and all 
uncensored data were reported in the same units throughout 
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the record (for example, all uncensored data for a parameter 
were reported in units of milligrams per liter or micrograms 
per liter), then those same units were assumed to apply to 
all censored data for that parameter from that source. If 
necessary, all retained data were converted to milligrams per 
liter. 

Adjustments to U.S. Geological Survey Data Based on 
Historical Memorandums and Reports

Several adjustments to USGS data reported by the 
NWQL were necessary based on information contained in 
USGS technical memorandums and reports. Based on the 
NWQL technical memorandum 1997–10 (accessed April 1, 
2015, at http://wwwnwql.cr.usgs.gov/dyn.shtml?techmemo), 
censored and uncensored values of dissolved ammonia 
(parameter 00608) reported with values below 0.02 were 
recensored to less than 0.02 mg/L for samples analyzed by 
method I–2522–90 (USGS method codes CL035, CL036, 
and CL037) between October 1, 1994, and September 30, 
1997 (tables 3–1 and 3–2). Analytical methods are presented 
in this report using the 5-digit internal laboratory code that 
is embedded in the analyte identification field in the NWQL 
online catalog (http://nwql.cr.usgs.gov/usgs/catalog/index.
cfm). Based on Patton and Truitt (2000), 0.1 mg/L was 
subtracted from the results for total and dissolved Kjeldahl 
nitrogen samples (parameters 00623 and 00625, respectively) 
collected between January 1, 1986, and October 1, 1991, that 
were analyzed by methods I–2552–85 (USGS method code 
CL051) and I–4552–85 (USGS method code CL083) because 
corrections for digestion blank concentrations (nearly equal 
to 0.1 mg/L) were not subtracted from the results originally 
reported. If the resulting value was below the detection 
limit at the time, the value was censored at the detection 
limit. Based on NWQL technical memorandum 1998–07 
(accessed April 1, 2015, at http://wwwnwql.cr.usgs.gov/dyn.
shtml?techmemo), results for dissolved and total phosphorus 
samples (parameters 00666 and 00665, respectively) 
collected between October 1, 1991, and September 30, 1998, 
that were analyzed by methods I–2610–91 and I–4610–91 
(USGS method codes KJ004, KJ005, KJ009, KJ0010, 
KJ011) and reported below the 0.03 mg/L long-term method 
detection limit (LT–MDL) were censored to less than 0.05 
mg/L (appendix 3). 

These corrections were applied to data from the NWIS 
database that had the analyzing entity defined as NWQL, or 
when the analyzing entity was missing. In the latter case, 
which was true of many samples in the NWIS database, 
the analyzing entity was assumed to be NWQL. While this 
may not have always been a correct assumption and may 
have led to inappropriate adjustment of some data analyzed 
by other laboratories, it enabled appropriate adjustment to 
a large amount of NWQL-generated data (when analyzing 
agency was populated, about 91 percent of the samples were 
analyzed at NWQL). Because similarly detailed histories of 

method performance and data quality from laboratories other 
than the NWQL were not readily available, no adjustments 
were made to data from other laboratories. 

Field blanks test for bias in concentrations that could 
result from contamination during sample collection and 
handling, shipping, and laboratory analysis. As part of the 
NAWQA Project, the quality of nutrient data collected at 
NAWQA sites during 1992–2001 was examined (Mueller 
and Titus, 2005). The study determined no contamination 
issues with nitrite plus nitrate values and Kjeldahl nitrogen 
values but did find indication of contamination with some 
ammonia, orthophosphate, and total phosphorus samples; 
however, this contamination was determined to be small: 
“Potential contamination in at least 80 percent of all samples 
is estimated to be no greater than the detection limit for all 
nutrient analytes except ammonia in ground water” (Mueller 
and Titus, 2005). The absolute value of the average rate of 
change at all of the trend sites in this report was 0.09 mg/L as 
N for ammonia, 0.05 mg/L as P for orthophosphate, and 0.09 
mg/L as P for total phosphorus (see “Trend Results” section 
of this report). According to table 3 in Mueller and Titus 
(2005), the 80th percentile of the concentrations detected in 
the field blanks in streams was 0.02 mg/L as N for ammonia, 
less than 0.01 mg/L as P for orthophosphate, and less than 
0.01 mg/L as P for total phosphorus; therefore, the magnitude 
of any potential contamination is likely to be much smaller 
than the environmental change at the trend sites in this report 
and would likely have a negligible effect. Although a more 
recent systematic evaluation of the quality of NAWQA 
data—including nutrients and other parameters—has not 
been published, it is unlikely that there have been major 
changes in the degree of contamination during nationwide 
field sampling or in the degree of contamination in the 
laboratory (as supported by the analysis of laboratory bias in 
this study; see appendix 4). In addition, when the magnitude 
of any contamination randomly varies over time, it is 
unlikely to affect trend analysis, but systematic increases 
or decreases over time in the magnitude of contamination 
could contribute to false trends. There is no evidence that 
field contamination has been systematically increasing or 
decreasing over time (Mueller and Titus, 2005). Because data 
were used collected by multiple USGS projects (not limited 
to NAWQA) and because potential contamination could 
have negligible effect on the trend analysis, an attempt was 
not made to correct the data based on the findings in Mueller 
and Titus (2005); however, the findings of that report may be 
useful in the interpretation of trend results. 

Recensoring U.S. Geological Survey Data

On October 1, 1998, the NWQL began implementing 
new reporting conventions for nondetections (Oblinger 
Childress and others, 1999). Prior to October 1, 1998, 
nondetections were censored to a method detection level 
(MDL), the concentration at which the risk of a false 
positive detection (analyte reported as present at the MDL 

http://wwwnwql.cr.usgs.gov/dyn.shtml?techmemo
http://nwql.cr.usgs.gov/usgs/catalog/index.cfm
http://nwql.cr.usgs.gov/usgs/catalog/index.cfm
http://wwwnwql.cr.usgs.gov/dyn.shtml?techmemo
http://wwwnwql.cr.usgs.gov/dyn.shtml?techmemo
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when not in the sample) is no more than 1 percent, or to a 
minimum reporting level (MRL), an inconsistently defined 
level of detection capability. The NWQL deemed the use 
of inconsistent MRL as inappropriate and also observed 
that the risk of a false negative occurrence at the MDL 
(analyte reported as not present when present at the MDL 
concentration) could be as much as 50 percent. To make 
the determination of detection limits more consistent and to 
reduce the risk of false negatives to no more than 1 percent, 
the NWQL began using a laboratory reporting level (LRL) 
in combination with a LT–MDL on October 1, 1998, based 
on Oblinger Childress and others (1999). The LRL typically 
was twice the LT–MDL. Between October 1, 1998, and 
October 1, 2010, concentrations measured between the LRL 
and the LT–MDL were reported as estimated concentrations 
with an “E” remark code and nondetections were censored to 
the higher LRL. Beginning on October 1, 2010, the NWQL 
censored inorganic nondetections to the LT–MDL (https://
water.usgs.gov/admin/memo/QW/qw10.07.html).

The reporting convention in place between October 1, 
1998, and October 1, 2010, creates potential bias in statistical 
analyses because it improperly represents the proportions 
of the data below the LT–MDL and the LRL (Helsel, 2005). 
In particular, observations that are truly below the LT–MDL 
will be reported as censored at the higher LRL; thus, the 
probability that an observation falls between the LT–MDL 
and the LRL may be overestimated, and the probability that 
it falls below the LT–MDL may be underestimated (Helsel, 
2005). Depending on the true percentage of data below the 
LT–MDL, this can cause an upward bias that will adversely 
affect statistical analyses when these affected data are pooled 
with data subject to conventional censoring (that is data not 
recensored from the LT–MDL to the LRL). To avoid this 
problem, there are two potential solutions: (1) The LT–MDL 
becomes the reporting limit when values reported as censored 
at the higher LRL are recensored to the lower LT–MDL, and 
uncensored “E” values between the LT–MDL and the LRL 
are not recensored. (2) The LRL becomes the reporting limit 
when all uncensored “E” values below the LRL are censored 
at the LRL. To retain the extra information captured by the 
“E” values, the first solution was used for USGS data from 
the NWQL that were originally reported using the LRL 
approach. The “E” remark code may have been applied to 
other values for unrelated performance-based reasons as 
described in Oblinger Childress and others (1999); these 
values were unchanged.

Similar to the description in the “Adjustments to U.S. 
Geological Survey Data Based on Historical Memorandums 
and Reports” section, these adjustments were applied to data 
from the NWIS database that had the analyzing entity defined 
as NWQL or when the analyzing entity was missing. For 
data analyzed at other laboratories, metadata documenting 
reporting conventions for censored data were not readily 
available; therefore, all censored data from laboratories other 
than the NWQL were unaltered. 

Duplicate Samples 

It was not uncommon to receive the same water-quality 
data for the same site and collection date from more than 
one source during the compilation of data. Duplicates were 
defined as samples from the same site, date, time, and 
fraction. Duplicate samples were removed from the dataset. It 
was not possible to determine which of the duplicate samples 
should be removed on the basis of data source because 
sometimes a source provided longer or more completely 
populated records for some parameters (for example, there 
may have been duplicate data obtained from STORET and 
provided directly by a State agency but overall the STORET 
record was longer for total nitrogen whereas the State record 
was longer for total phosphorus). As a result, each parameter 
was considered separately when deciding which duplicate 
samples to retain and which to exclude. Note that duplicate 
samples did not always have identical values for a given 
parameter. If one of the duplicate samples was from USGS 
and one was from another agency, the USGS sample was 
retained. If both were USGS samples (for example, the 
duplicate samples were obtained from two different USGS 
NWIS servers), the sample from the primary host server 
(home State for each site) was retained. If information 
on the primary host server was not available, one of the 
duplicate samples was randomly retained. If both samples 
were from agencies other than USGS, and one sample had 
been provided by the CBP, then the sample from the CBP 
was retained. If both samples were from agencies other than 
USGS and the CBP, then the sample from the longest period 
of record was retained. Note that priority was not given 
to USGS samples because of an a priori expectation that 
USGS data were of better quality, but because typically more 
metadata were available on how samples were collected, 
analyzed, and stored. 

Zero, Negative, and Missing Concentration Values

An analytical determination of zero or negative 
concentration is not possible, so zero or negative values 
in the data were considered suspect. For a given site and 
parameter combination, if a censored remark code was 
frequently associated with a zero or negative concentration 
value, all zero and negative values were assumed to 
represent censored values and were set to the reported 
censored value that was closest in time for that site and 
parameter combination. In addition, missing values that were 
reported with a censored remark code were assumed to be 
censored values without an associated laboratory detection 
level. These values were also set to the reported censored 
value that was closest in time for that site and parameter 
combination. If there were no reported censored values for 
a site and parameter combination, then zero, negative, or 
missing censored concentration values were set to the lowest 
uncensored value for that site and parameter combination and 
a censored remark code was assigned.

https://water.usgs.gov/admin/memo/QW/qw10.07.html
https://water.usgs.gov/admin/memo/QW/qw10.07.html
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In some cases, these assumptions may have resulted in 
an incorrect value. For example, the zero, negative, or missing 
censored values may have been from samples that were not 
analyzed in the same laboratory as other samples for the given 
parameter or for samples with a laboratory error. Alternatively, 
the assumed detection limit assigned to these values may 
be wrong. The approach used in this study to populate zero, 
negative, or missing censored values was unlikely to affect 
the subsequent trend results when such values collectively 
constituted a small fraction of the total data for a site and 
parameter combination; therefore, when zero, negative, and 
missing censored values made up more than 1 percent of the 
overall dataset for a site and parameter combination, all data 
for that site and parameter combination were not included in 
the determination of trend. 

Calculation of Target Parameters

In many cases, certain parameters were not directly 
determined in a laboratory analysis and were calculated by 
summing other parameters. When a parameter was not directly 
determined in a laboratory analysis, the following algorithms 
were used to calculate the value:

	 Nitrite plus nitrate = nitrite + nitrate,	 (2)

Kjeldahl nitrogen (filtered) = organic nitrogen (filtered) 
	 + ammonia,	 (3)

Kjeldahl nitrogen (unfiltered) = 
	 organic nitrogen (unfiltered) + ammonia, 	 (4)

Dissolved nitrogen = nitrite plus nitrate 
	 + Kjeldahl nitrogen (filtered),	 (5)

Total phosphorus = particulate phosphorus 
	 + dissolved phosphorus,	 (6)

Total nitrogen = particulate nitrogen 
	 + dissolved nitrogen, 	 (7)

Total nitrogen = Kjeldahl nitrogen (unfiltered) 
	 + nitrite plus nitrate, and 	 (8)

Total nitrogen = Kjeldahl nitrogen (unfiltered) + nitrate.	 (9)

The priority among the three total nitrogen calculations is as 
shown; that is, equation 7 was the first priority, equation 8 was 
the second priority, and equation 9 was the third priority.

As explained in the “Unfiltered and Filtered Fractions” 
subsection of the “Nutrient Data Processing” section, nitrite, 
nitrate, and ammonia concentrations from all fractions 
(including filtered, unfiltered, total, or missing) were pooled 
in the trend calculation for each parameter. For other trend 
calculations, only data specified as filtered were used for 
organic nitrogen (filtered) and Kjeldahl nitrogen (filtered); 
only data specified as unfiltered were used for organic nitrogen 
(unfiltered) and Kjeldahl nitrogen (unfiltered); only data 
specified as filtered were used for dissolved phosphorus and 
dissolved nitrogen; and only data specified as particulate or 
nonfilterable were used for particulate nitrogen and particulate 
phosphorus. Also, nitrate and nitrite plus nitrate were 
considered to be indistinguishable, so either could be used in 
the calculation of total nitrogen. If both were available in the 
same sample, nitrite plus nitrate was prioritized.

In cases when one or more of the summands was 
censored, interval censoring (Hirsch and De Cicco, 2015) was 
used. Consider the calculation of total nitrogen for the sample 
collected at the Potomac River at Chain Bridge, Washington, 
D.C. (Site 01646580), on June 7, 1999. Nitrite plus nitrate was 
reported as 0.596 mg/L, and Kjeldahl nitrogen was reported 
as less than 0.1 mg/L. Interval censoring accounts for the fact 
that the exact Kjeldahl nitrogen value is unknown but lies 
somewhere between 0 and 0.1; therefore, the lowest the total 
nitrogen value could be is 0.596 plus 0, or 0.596; the highest 
the total nitrogen value could be is 0.596 plus 0.1, or 0.696. 
The resulting interval censored value for total nitrogen is 
(0.596, 0.696).

If a value directly measured in a laboratory and a new 
calculated value ultimately were available for the same 
parameter in the same sample, the laboratory value was 
prioritized. For some samples, a calculated value was already 
present in the original data record along with laboratory 
values for the summands. Because the algorithm used to 
calculate that value was unknown and the treatment of any 
censored summands during the calculation was unknown (for 
example, one-half of the detection limit is often substituted 
for a censored value), calculations 2 through 9 listed above 
were made when summand values were available. The 
new calculated value was retained in place of the original 
calculated value. It was not always clear whether a provided 
value was calculated or measured in a laboratory analysis. 
For example, nitrite, nitrate, and nitrite plus nitrate can each 
be determined analytically or by calculation, depending on 
the laboratory methods used. Because laboratory methods 
were infrequently and inconsistently reported, it is possible 
that a measured value was inadvertently replaced with a 
new calculated value in an unknown number of samples. 
The new calculated value might differ from the original 
measured value; for example, in samples when one or more 
of the values involved in the calculation were censored, or 
when particulate and dissolved fractions were summed to 
determine total nitrogen rather than a value determined by 
persulfate digestion.



Methods    37

Multiple steps were used to determine the final trend 
model input values used in this study.  Note that, because 
of the adjustments to USGS data based on historical 
memorandum, the recensoring of some USGS data, the 
summation of individual analytes for total parameters, the 
use of unrounded data from NWIS, and the use of interval 
censoring, the final USGS values used in this study will 
not always match the corresponding value stored in the 
NWIS database.

Partial and total nutrient values also were used for a 
more general quality screen of data from each source. All data 
from a given source were pooled together, and partial and 
total values were compared (for example, paired nitrite plus 
nitrate and total nitrogen values were compared). Censored 
values were excluded from these comparisons because of the 
potential for differences in the respective detection limits. If 
partial values exceeded total values by more than 25 percent 
in more than 50 percent of paired samples, there was a high 
likelihood of laboratory performance issues, and all data 
from that source were excluded for those parameters. This 
comparison was made for Kjeldahl nitrogen and total nitrogen, 
nitrite plus nitrate and total nitrogen, nitrate and total nitrogen, 
particulate nitrogen and total nitrogen, total dissolved nitrogen 
and total nitrogen, orthophosphate and total phosphorus, 
particulate phosphorus and total phosphorus, and total 
dissolved phosphorus and total phosphorus. 

Identification of a Colocated or Nearby Streamgage 

Following the steps described in the previous subsections 
of the “Nutrient Data Processing” section, all site and 
parameter combinations with at least 3 years of consecutive 
data with at least quarterly sampling (see “Coverage of 
Changing Seasons” section in this report for details on how 
quarters were defined) were paired with a streamgage from 
the final site-streamgage list assembled in the “Streamgage 
Selection” section of this report. Any site not meeting these 
minimum data requirements and without an acceptable 
streamgage match was excluded from further consideration. 

Merging Colocated or Neighboring Water-Quality Sites

After assigning a streamgage to each site, the retained 
sites represented two classes of sites: (1) sites that had a 
sufficient amount of data over a long enough period of record 
(at least for the shortest trend period of 10 years), to be used 
on their own for trend analysis (single sites); (2) sites that had 
data for a shorter period of record (at least 3 consecutive years 
of quarterly data) that could be combined into a composite 
site with either other colocated or neighboring composite sites 
to form a single record for trend analysis or a colocated or 
neighboring stand-alone site to increase the number of trend 
periods that could be evaluated at the stand-alone site. Single 
and composite sites were only combined when additional 
trend periods could be evaluated after combining; they were 
not combined to only fill in short gaps or add to the existing 
data at the single site when the combination did not increase 

the number of trend periods that could be evaluated. Data for 
periods shorter than 3 years were not used to fill in gaps or 
extend the record at other composite or single sites because 
it was decided that the nonrandom variability introduced 
into those types of combined time series would outweigh the 
benefits during trend analysis. 

Following methods described in the “Streamgage 
Matching” section, potential colocated and neighboring 
sites were identified, and sites with intervening influences 
were excluded. A maximum of two sites was combined to 
minimize nonrandom variability. If more than two sites were 
available, then the two sites with the longest period of record 
for the parameter of interest were selected for the composite 
site. If more than one of the remaining sites merged well 
with the primary record, then the site with the longest record 
was retained. A list of composite sites with the individual 
sites for each parameter used in trend analysis can be found 
in appendix 1, table 1–7. The subsequent processing steps 
described below were applied to the data record for merged 
sites and single sites.

Degree of Censoring

Following guidelines suggested for the trend method 
used in this study, site and parameter combinations with more 
than 50 percent censoring were excluded from trend analysis 
(Hirsch and De Cicco, 2015). Left-censored and interval-
censored values, if less than 50 percent of the dataset, were 
included in this determination. Right-censored data were 
removed from the dataset.

Outliers

A small number of values in the dataset appeared to 
be typographical errors. For example, a total phosphorus 
concentration of 500 mg/L is extremely unlikely to occur in 
natural waters. It is far more likely that the units were reported 
incorrectly and that the true value is 500 µg/L or 0.5 mg/L. 
In contrast, a total phosphorus concentration of 50 mg/L is 
more ambiguous. That concentration is very high relative 
to concentrations found in most natural waters (Dubrovsky 
and others, 2010), but it could occur during locally extreme 
conditions such as an overflow of untreated sewage or a heavy 
runoff event immediately after nearby fertilizer application. 
In a smaller study involving far fewer sites and data sources, 
it might be possible to definitively establish the accuracy of 
ambiguous data points by checking laboratory records, field 
forms, or other sources of historical information, but that 
was not possible in a study of this size because of resource 
constraints, so only the most extreme outliers—those that 
were almost certainly typographical errors—were excluded. 
Under a normal distribution, 99.9999998 percent of the data 
should be within six standard deviations from the mean; only 
the most extreme values will be outside of that range. For 
each site and parameter pair, the data were divided into four 
seasons. Within each season, any data value further than six 
standard deviations from the mean in log space were excluded 
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as a likely typographical error. With this approach, there was a 
risk that typographical errors representing less extreme values 
were retained. There was also a risk that values representative 
of true environmental conditions were excluded. 

Data Thinning

The nutrient trend model used in this study weights 
days with multiple water-quality samples more heavily than 
other days during calibration. As a result, data for each site 
and parameter combination were thinned to have no more 
than one sample per day. If there was more than one sample 
per day, one sample was randomly selected to be retained 
in the dataset. The presence of data points spaced closely 
together in time also can introduce serial correlation into a 
time series. With some trend methods, serial correlation can 
increase the probability of incorrectly rejecting the test’s null 
hypothesis of no trend, leading to an incorrect determination 
that a significant trend has occurred (Hirsch and Slack, 1984); 
The trend method in this study relied on bootstrapping to 
determine p-values (see “Nutrient, Sediment, Major Ion, 
Salinity, and Carbon Trend Analysis Method” section in this 
report), an approach that is less affected by serial correlation. 
For that reason, the datasets were not thinned for data points 
close in time on different days.

Final Screening for Data Coverage

Once data from colocated or neighboring sites had been 
merged, and the censoring, outlier, and data thinning steps had 
been completed, the resulting data series were screened again 
by parameter. In this final screening step, the requirements for 
data coverage were more stringent. All sites not meeting these 
criteria were excluded for trend analysis.

Coverage Throughout Target Trend Periods

•	 The target trend periods, in water years, were (1) 
1972–2012, (2) 1982–2012, (3) 1992–2012, and 
(4) 2002–2012. Data were permitted to begin in the 
specified start year or the following year. For example, 
a start year of either 1972 (October 1, 1971) or 1973 
(October 1, 1972) was acceptable in trend period 1, but 
1974 (October 1, 1973) was not. Data were permitted 
to end in the specified start year or the preceding year. 
An end year of either 2011 (September 30, 2011) or 
2012 (September 30, 2012) was acceptable in all trend 
periods, but 2010 was not. 

•	 The first 2 years and the last 2 years of a trend period 
were required to have at least quarterly samples. See 
the “Coverage of Changing Seasons” section below for 
more detail on how quarters were defined.

•	 Overall, 70 percent of all years during a trend period 
were required to have at least quarterly samples. Any 
gap must have occurred in the middle of the record. 

•	 Longer gaps in quarterly data were permitted when 
there was at least a 10-year span meeting the criteria 
beginning in any of the start years (for example, data 
from 1972 to1981 or 1982 to 1991) and a 10-year span 
meeting the criteria ending in either 2011 or 2012. Data 
during each of those decades must have met the other 
detailed criteria. Gaps of any length were permitted in 
the years between the beginning and ending decades. 

•	 At least 14 percent of the samples were required to 
be high-flow samples in at least half of the decades 
assessed during a given trend period in order to ensure 
the full range of flows were represented. In the other 
half of the decades, at least 10 percent of the samples 
were required to be high-flow samples. For the shortest 
trend period (2002–12) of one decade, at least 14 
percent of the samples were required to be high-flow 
samples. See the “Coverage of Changing Streamflow” 
section below for more detail on how high-flow 
samples were defined.

Coverage of Changing Seasons

Nutrient concentrations vary throughout the year in 
response to changes in sunlight, temperature, biological 
activity, and nutrient sources (Dubrovsky and others, 2010). 
Samples representing seasonal conditions throughout the year 
are needed to fully characterize changes in concentration. To 
ensure seasonal coverage, 70 percent of years during a trend 
period were required to have at least one sample per quarter; 
the remaining 30 percent of years could be missing some or 
all quarterly samples. This allowed for reasonable changes in 
sampling design over time. 

To evaluate seasonal coverage, the water year was 
divided into quarters using three different divisions of the 
water year (table 4). Each quarter consisted of 3 calendar 
months (table 4). A site was accepted if the samples met 
any one of the quarterly definitions in table 4; the quarterly 
definition was permitted to vary from year to year. This 
method of testing for quarterly samples accommodated 
variations in real-world sampling schedules. The primary 
sampling-design artifact this accommodated was the 
occurrence of two samples in one quarter and none in the 
preceding or following quarter, which may have occurred if 
a sample was collected slightly earlier or slightly later than 
dictated by a strict 3-month schedule. As an example, consider 
a site sampled in January, late March, July, and October during 
a particular year. The source collecting these data is clearly 
collecting quarterly samples; however, the sample that should 
have been collected in April was collected in late March. 
Without a flexible quarter definition, this year would not have 
had quarterly sampling. This flexible method of defining 
quarters also provides a buffer for sources that sample rivers 
that may freeze in the winter. For various reasons, including 
the weather, a winter quarterly sample may need to be 
collected anytime between November and February.
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Table 4.  Definitions of quarters used to test sites for a sufficient number of samples for trend analysis.

Quarter 
definition 
based on 

water year 
division

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.

Division I 1 1 1 2 2 2 3 3 3 4 4 4
Division II 4 1 1 1 2 2 2 3 3 3 4 4
Division III 4 4 1 1 1 2 2 2 3 3 3 4

Coverage of Changing Streamflow

Nutrient concentrations also vary in response to changes 
in streamflow (Hem, 1984; Dubrovsky and others, 2010). 
Samples representing a range of streamflow conditions are 
needed to fully characterize changes in concentration over 
time. Low- or moderate-flow samples are not in short supply. 
To identify high-flow samples, streamflow on the date of 
each sample was compared to the 85th percentile of flows 
in that month during the corresponding decade of the trend 
period at that site (depending on the trend period, that would 
include some or all of the following decades: 1972–81, 
1982–91, 1992–2001, and 2002–12). For example, for a 
sample collected on March 1, 1998, the 85th percentile of all 
daily streamflows in March during the decade 1992–2001 was 
determined. If the streamflow on March 1, 1998, was greater 
than the 85th percentile of March streamflows during that 
decade, the sample was considered to be a high-flow sample. 
This assessment was completed by decade rather than once for 
the full trend period to ensure that samples at high streamflows 
were distributed throughout the trend period, rather than 
potentially being concentrated in one part of it. It also allowed 
for the identification of high-flow samples collected during 
prolonged low-flow periods (for example, droughts). Such 
high-flow samples would have been collected during flows 
that were elevated relative to an unusually low baseline; the 
flows may not have been particularly high relative to overall 
average conditions at a site.

To ensure appropriate streamflow coverage, at least 14 
percent of the samples were required to be high-flow samples 
in at least half of the decades assessed during the trend period. 
In the other half of the decades, at least 10 percent of the 
samples were required to be high-flow samples. The relaxation 
of the 14-percent criterion to 10 percent in some decades 
was necessary to accommodate sites with changing sampling 
designs over time (for example, the collection of high-flow 
samples increased somewhat or decreased somewhat over 
time). For the shortest trend period (2002–12) of only one 
decade, at least 14 percent of the samples were required to be 
high-flow samples during that period. These thresholds were 
based on sensitivity testing described in the “Storm Sampling” 
section of this report.

Data Used in Model Calibration
For site and parameter combinations that met the 

screening criteria, all available data before, during, and after 
the trend period (and if applicable, during any gaps) were 
retained to improve the model calibration (see the “Influence 
of New Data on Trend Estimates” section). Ultimately, model 
estimates only during the screened trend period were retained. 
In the case of longer records with data in two different decades 
separated by gaps, model estimates made in the years between 
the beginning and ending decades were excluded. Model input 
data are available in De Cicco and others (2017). 

There were 850 sites evaluated for nutrient trends 
with 2,211 combinations of sites and parameters. Table 5 
summarizes the number of sites evaluated for each parameter 
and trend period. A complete list of sites and parameters 
evaluated for nutrient trends is reported in appendix 1, table 
1–6.

Sediment Parameters of Interest and 
Harmonization

The target sediment parameters for trend analysis were 
SSC and TSS. Parameter code, analytical method, parameter 
name, and fraction were used to harmonize the SSC and 
TSS records. Parameters that were not a variation on the 
target parameters were excluded. For example, analyses were 
excluded if the compiled data contained numerous analyses of 
fractions of the total sediment or solids, such as total dissolved 
solids, fixed solids, and volatile solids. Additionally, any 
analyses of specific size fractions of the sediment, such as less 
than 62.5 microns, were excluded. Numerous parameters were 
ambiguous because of missing metadata and were used only 
when the source specified their interpretation of the parameter 
(for example, some sources did not include the analysis 
fraction but did include the laboratory method, which provided 
unambiguous information about the analysis).

Naming conventions for SSC and TSS varied widely 
among data sources. For example, all of the variations on 
total suspended solids are shown in appendix 2, table 2–2. 
Numerous steps were taken to harmonize different parameter 
names that represented the same method of analysis for 
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Table 5.  Number of trend sites for each parameter and trend period combination.

[--, no trend sites for this parameter and trend period]

Parameter  
group

Parameter
Trend period

1972–2012 1982–2012 1992–2012 2002–12
Carbon Alkalinity 63 114 241 446
Carbon Dissolved organic carbon -- -- 15 48
Carbon Total organic carbon 5 10 61 209
Ecology Diatoms -- -- 3 35
Ecology Fish -- -- 4 47
Ecology Invertebrates -- -- 9 49
Major ion and salinity Bromide -- -- 2 32
Major ion and salinity Calcium 27 50 98 216
Major ion and salinity Chloride 57 95 163 367
Major ion and salinity Magnesium 28 51 97 214
Major ion and salinity Potassium 19 44 80 162
Major ion and salinity Sodium 20 44 83 171
Major ion and salinity Specific conductance 138 286 529 859
Major ion and salinity Sulfate 44 71 143 304
Major ion and salinity Total dissolved solids 35 50 123 280
Nutrient Ammonia 24 103 200 344
Nutrient Nitrate 54 161 286 498
Nutrient Orthophosphate, filtered 5 46 146 279
Nutrient Orthophosphate, unfiltered -- -- -- 29
Nutrient Total nitrogen 12 85 172 331
Nutrient Total phosphorus 41 145 304 489
Pesticide 2,6-Diethylaniline -- -- 1 --
Pesticide Acetochlor -- -- -- 35
Pesticide Alachlor -- -- 5 27
Pesticide Atrazine -- -- 6 67
Pesticide Carbaryl -- -- 5 31
Pesticide Carbofuran -- -- 4 --
Pesticide Chlorpyrifos -- -- 6 18
Pesticide Cyanazine -- -- 5 3
Pesticide Dacthal -- -- 4 18
Pesticide Deethylatrazine -- -- 6 62
Pesticide Desulfinylfipronil -- -- -- 37
Pesticide Desulfinylfipronil amide -- -- -- 10
Pesticide Diazinon -- -- 6 30
Pesticide Dieldrin -- -- 2 2
Pesticide S-Ethyl dipropylthioarbamate (EPTC) -- -- 4 11
Pesticide Ethoprophos -- -- 1 3
Pesticide Fipronil -- -- -- 32
Pesticide Fipronil sulfide -- -- -- 23
Pesticide Fipronil sulfone -- -- -- 14
Pesticide Fonofos -- -- 4 --
Pesticide Malathion -- -- 2 6
Pesticide Metolachlor -- -- 5 58
Pesticide Metribuzin -- -- 4 20
Pesticide Molinate -- -- 1 1
Pesticide Pendimethalin -- -- 6 11
Pesticide Prometon -- -- 6 54
Pesticide Propanil -- -- -- 1
Pesticide Propargite -- -- 1 --
Pesticide Propyzamide -- -- -- 3
Pesticide Simazine -- -- 6 56
Pesticide Tebuthiuron -- -- 4 25
Pesticide Thiobencarb -- -- -- 1
Pesticide Trifluralin -- -- 6 5
Sediment Suspended sediment concentration 9 25 66 107
Sediment Total suspended solids 5 133 252 437
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sediment concentration. In many cases, the analysis represented 
by the parameter name was not clear. Metadata critical to 
precisely identifying and quantifying each data value—such 
as analytical method, subsampling, and units—often were 
incomplete, rendering the data value ambiguous. When any of 
these critical metadata were missing, the data were not used. 
In select cases, agencies were contacted to fill in the gaps in 
metadata. Any data values that were reported without units, 
such that it could not be unambiguously determined whether 
they were reported in milligrams per liter, micrograms per liter, 
or some other unit, were excluded. 

All remaining concentration data with complete and 
unambiguous metadata were converted to milligrams per liter 
of SSC or TSS. Converted concentrations were rounded to 
the number of decimal places in the original value, with the 
exception of values converted only from micrograms per liter 
to milligrams per liter (because of the possibility of rounding a 
converted value to zero).

Sediment Data Processing 
In order to reduce the nutrient dataset to a more reasonable 

size and to eliminate sites with very limited data that were not 
suitable for trend analysis, only sites that had at least 3 years 
of consecutive sediment data with at least quarterly sampling 
initially were retained. Details on how quarters were defined 
can be found in the “Coverage of Changing Seasons” section in 
this report. 

Discrete Samples

Discrete samples were used in the study to avoid 
introducing sampling inconsistency. Composite samples—
multiple discrete samples collected over an extended period of 
time (often more than 24 hours or throughout a storm event) 
that were composited together into a single sample—were 
excluded from the study.

Samples Analyzed in the Field

To maintain basic comparability in precision and accuracy 
of analytical determinations, data were restricted to samples 
analyzed in laboratories. Remark codes on samples (for 
example, Virginia Department of Environmental Quality remark 
code H: “Value based on field kit determination; may not be 
accurate”) and sample types (“Field Msr/Obs”) were used to 
identify samples that were analyzed in the field. Information 
on whether the samples were analyzed in the field or laboratory 
was not always provided, so some samples that were analyzed 
in the field may have been inadvertently retained. 

Remark Code Harmonization

There were over 1,400 unique remark codes in the 
original dataset including all parameters. Many of these were 
not defined, and many others were ambiguously defined. Data 
with undefined or ambiguous remark codes were excluded. 
Of most interest for this study were remark codes indicating 

poor data quality (for example, “Contamination present in the 
sample”) and remark codes indicating censored data or data 
below a laboratory detection limit. Data with one or more 
remark codes indicating poor data quality were excluded. 
Data with a remark code indicating laboratory censoring were 
retained. There were about 65 unique remark codes in the data 
indicating laboratory censoring; these were unified under a 
single remark code of “<.” In some cases, there was no remark 
code provided, but a comment field associated with a data 
value indicated that the value was censored; these values also 
were given a remark code of “<.”

Some sources reported a censored remark code for an 
observation but did not report an associated value. When 
more than 1 percent of the data for a parameter at a site had 
a censored remark code but no values, then all of the data 
(censored and uncensored) for that site and parameter were 
excluded. When less than 1 percent of the data for a parameter 
at a site had a censored remark code with a missing value, and 
censored values were reported for other observations, then 
the missing censored values were set to the reported censored 
value that was closest in time for that site and parameter. 

In some cases when an agency reported data with 
censored remark codes, units were provided for uncensored 
data but not for censored data. Again, the reasons for 
this practice are unknown, but it creates the potential for 
substantially biased analyses if only the censored data were 
excluded because the units were missing. If all of the missing 
units were for censored data for a parameter from a given 
source, and all uncensored data were reported in the same 
units throughout the record (for example, all uncensored 
data for a parameter were reported in units of milligrams per 
liter or micrograms per liter), then those same units were 
assumed to apply to all censored data for that parameter from 
that source. If necessary, all retained data were converted to 
milligrams per liter.

Duplicate Samples 

It was not uncommon to have received the same water-
quality data for the same site and collection date from more 
than one source during the data compilation effort. Duplicates 
were defined as samples from the same site, date, time, and 
fraction. Duplicate samples were removed from the dataset. It 
was not possible to determine which of the duplicate samples 
should be removed based solely on data source because 
sometimes a source provided longer or more completely 
populated records for some parameters (for example, there 
may have been duplicate data obtained from STORET and 
provided directly by a State agency, but overall the STORET 
record was longer for SSC and the State record was longer for 
TSS). As a result, each parameter was considered separately 
when deciding which duplicate samples to retain and which 
to exclude. Note that duplicate samples did not always have 
identical values for a given parameter. If one of the duplicate 
samples was from USGS and one was from another agency, 
the USGS sample was retained. If both were USGS samples 
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(for example, the duplicate samples were obtained from 
two different USGS NWIS servers), the sample from the 
primary host server (home State for each site) was retained. 
If information on the primary host server was not available, 
one of the duplicate samples was randomly retained. If 
both samples were from agencies other than USGS, and 
one sample had been provided by the CBP, then the sample 
from the CBP was retained. If both samples were from 
agencies other than USGS and the CBP, then the sample 
from the longest period of record was retained. Note that 
priority was not given to USGS samples because of an a 
priori expectation that USGS data were of better quality, 
but because typically more metadata were available on how 
samples were collected, analyzed, and stored. 

Zero, Negative, and Missing Concentration Values

An analytical determination of zero or negative 
concentration is not possible, so zero or negative values 
in the data were considered suspect. For a given site and 
parameter combination, if a censored remark code was 
frequently associated with a zero or negative concentration 
value, all zero and negative values were assumed to 
represent censored values and were set to the reported 
censored value that was closest in time for that site and 
parameter combination. In addition, missing values that were 
reported with a censored remark code were assumed to be 
censored values without an associated laboratory detection 
limit. These values were also set to the reported censored 
value that was closest in time for that site and parameter 
combination. If there were no reported censored values for 
a site and parameter combination, then zero, negative, or 
missing censored concentration values were set to the lowest 
uncensored value for that site and parameter combination, 
and a censored remark code was assigned.

In some cases, these assumptions may have resulted 
in an incorrect value. For example, the zero, negative, or 
missing censored values may have been from samples that 
were not analyzed in the same laboratory as other samples 
for the given parameter or samples for which there was some 
laboratory error. Alternatively, the assumed detection limit 
assigned to these values may be wrong. The approach used 
in this study to populate zero, negative, or missing censored 
values was unlikely to affect the subsequent trend results 
when such values collectively constituted a small fraction of 
the total data for a site and parameter combination; therefore, 
when zero, negative, and missing censored values made 
up more than 1 percent of the overall dataset for a site and 
parameter combination, all data for that site and parameter 
combination were not included in the determination of trend. 

Identification of a Colocated or Nearby Streamgage 

Following the steps described in the previous 
subsections of the “Sediment Data Processing” section, 
all site and parameter combinations with at least 3 years 
of consecutive data with at least quarterly sampling (see 

“Coverage of Changing Seasons” section in this report for 
details on how quarters were defined) were paired with a 
streamgage from the final site-streamgage list assembled in 
the “Streamgage Selection” section of this report. Any site 
not meeting these minimum data requirements and without 
an acceptable streamgage match was excluded from further 
consideration. 

Merging Colocated or Neighboring Water-Quality Sites

After assigning a streamgage to each site, the retained 
sites represented two classes of sites: (1) sites that had a 
sufficient amount of data over a long enough period of record 
(at least for the shortest trend period of 10 years) to be used on 
their own for trend analysis (single sites), and (2) sites that had 
data for a shorter period of record (at least 3 consecutive years 
of quarterly data) that could be combined into a composite 
site with either other colocated or neighboring composite sites 
to form a single record for trend analysis or a colocated or 
neighboring stand-alone site to increase the number of trend 
periods that could be evaluated at the stand-alone site. Single 
and composite sites were only combined when additional 
trend periods could be evaluated after combining; they were 
not combined to only fill in short gaps or add to the existing 
data at the single site when the combination did not increase 
the number of trend periods that could be evaluated. Data for 
periods shorter than 3 years were not used to fill in gaps or 
extend the record at other composite or single sites because 
it was decided that the nonrandom variability introduced 
into those types of combined time series would outweigh the 
benefits during trend analysis. 

Following methods described in the “Streamgage 
Matching” section, potential colocated and neighboring 
sites were identified, and sites with intervening influences 
were excluded. A maximum of two sites was combined to 
minimize nonrandom variability. If more than two sites were 
available, then the two sites with the longest period of record 
for the parameter of interest were selected for the composite 
site. If more than one of the remaining sites merged well 
with the primary record, then the site with the longest record 
was retained. A list of composite sites with the individual 
sites for each parameter used in trend analysis can be found 
in appendix 1, table 1–7. The subsequent processing steps 
described below were applied to the data record for merged 
sites and single sites.

Degree of Censoring

Following guidelines suggested for the trend method 
used in this study, site and parameter combinations with more 
than 50 percent censoring were excluded from trend analysis 
(Hirsch and De Cicco, 2015). Left-censored and interval-
censored values, if less than 50 percent of the dataset, were 
included in this determination. Right-censored data were 
removed from the dataset.
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Outliers

A small number of values in the data appeared to be 
typographical errors. For example, consider a case when 
reported SSC values in a river are between 45,000 mg/L and 
51,000 mg/L for several days, and then an SSC value of 660 
mg/L is reported, followed by 2 days with reported SSC values 
between 55,000 and 60,000 mg/L. It is extremely unlikely 
that SSC values would drop so low just for 1 intervening day. 
It is far more likely that there was a typographical error, and 
the true value is 66,000 mg/L. In contrast, a SSC value of 
123,000 mg/L is more ambiguous. That concentration is very 
high relative to concentrations found in most natural waters, 
but it could occur during locally extreme conditions such as a 
large storm event, or in a river with high suspended sediment 
loads. For example, during an initial evaluation of SSC data 
for this study, a survey of over 789,000 records in NWIS 
between 1965 and 2014 determined that the median SSC value 
was 58 mg/L and the 95th percentile SSC value was 3,070 
mg/L (U.S. Geological Survey, 2016). However, at USGS Site 
08353000, the Rio Puerco near Bernardo, New Mexico, the 
median SSC value was 32,200 mg/L and the 95th percentile 
SSC value was 179,000 mg/L (U.S. Geological Survey, 2016). 
In a smaller study involving far fewer sites and data sources, 
it might be possible to definitively establish the accuracy of 
ambiguous data points by checking laboratory records, field 
forms, or other sources of historical information, but that 
was not possible in a study of this size because of resource 
constraints and only the most extreme outliers—those that 
were almost certainly typographical errors—were excluded. 
Under a normal distribution, 99.9999998 percent of the data 
should be within six standard deviations from the mean; only 
the most extreme values will be outside of that range. For 
each site and parameter pair, the data were divided into four 
seasons. Within each season, any data value further than six 
standard deviations from the mean in log space were excluded 
as a likely typographical error. With this approach, there was a 
risk that typographical errors representing less extreme values 
were retained. There was also a risk that values representative 
of true environmental conditions were excluded. 

Data Thinning

The sediment trend model used in this study weights 
days with multiple water-quality samples more heavily than 
other days during calibration. As a result, data for each site 
and parameter combination were thinned to have no more 
than one sample per day. If there was more than one sample 
per day, one sample was randomly selected to be retained 
in the dataset. The presence of data points spaced closely 
together in time also can introduce serial correlation into a 
time series. With some trend methods, serial correlation can 
increase the probability of incorrectly rejecting the test’s null 
hypothesis of no trend, leading to an incorrect determination 
that a significant trend has occurred (Hirsch and Slack, 1984). 
The trend method in this study relied on bootstrapping to 
determine p-values (see “Nutrient, Sediment, Major Ion, 

Salinity, and Carbon Trend Analysis Method” section in this 
report), an approach that is less affected by serial correlation. 
For that reason, the datasets were not thinned for data points 
close in time on different days.

Final Screening for Data Coverage

Once data from colocated or neighboring sites had been 
merged, and the censoring, outlier, and data thinning steps had 
been completed, the resulting data series were screened again 
by parameter. In this final screening step, the requirements for 
data coverage were more stringent. All sites not meeting these 
criteria were excluded.

Coverage Throughout Target Trend Periods

•	 The target trend periods, in water years, were (1) 
1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 
2002–12. Data were permitted to begin in the specified 
start year or the following year. For example, a start 
year of either 1972 (October 1, 1972) or 1973 (October 
1, 1972) was acceptable in trend period 1, but 1974 
(October 1, 1973) was not. Data were permitted to 
end in the specified start year or the preceding year. 
An end year of either 2011 (September 30, 2011) or 
2012 (September 30, 2012) was acceptable in all trend 
periods, but 2010 was not. 

•	 The first 2 years and the last 2 years of a trend period 
were required to have at least quarterly samples. See 
the “Coverage of Changing Seasons” section below for 
more detail on how quarters were defined.

•	 Overall, 70 percent of all years during a trend period 
were required to have at least quarterly samples. Any 
gap must have occurred in the middle of the record. 

•	 Longer gaps in quarterly data were permitted when 
there was at least a 10-year span meeting the criteria 
beginning in any of the start years (for example, data 
from 1972 to 1981 or 1982 to 1991) and a 10-year span 
meeting the criteria ending in either 2011 or 2012. Data 
during each of those decades must have met the other 
detailed criteria. Gaps of any length were permitted in 
the years between the beginning and ending decades. 

•	 At least 14 percent of the samples were required to 
be high-flow samples in at least half of the decades 
assessed during a given trend period in order to ensure 
the full range of flows were represented. In the other 
half of the decades, at least 10 percent of the samples 
were required to be high-flow samples. For the shortest 
trend period (2002–12) of one decade, at least 14 
percent of the samples were required to be high-flow 
samples. See the “Coverage of Changing Streamflow” 
section below for more detail on how high-flow 
samples were defined.
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Coverage of Changing Seasons

Suspended sediment concentrations vary throughout 
the year in response to changes in temperature and sediment 
sources (Walling, 2005; Garcia, 2007). Samples representing 
seasonal conditions throughout the year are needed to fully 
characterize changes in concentration. To ensure seasonal 
coverage, 70 percent of years during a trend period were 
required to have at least one sample per quarter; the remaining 
30 percent of years could be missing some or all quarterly 
samples. This allowed for reasonable changes in sampling 
design over time. 

To evaluate seasonal coverage, the water year was 
divided into quarters using three different divisions of the 
water year (table 4). Each quarter consisted of 3 calendar 
months (table 4). A site was accepted if the samples met 
any one of the quarterly definitions in table 4; the quarterly 
definition was permitted to vary from year to year. This 
method of testing for quarterly samples accommodated 
variations in real-world sampling schedules. The primary 
sampling-design artifact this accommodated was the 
occurrence of two samples in one quarter and none in the 
preceding or following quarter, which may have occurred if 
a sample was collected slightly earlier or slightly later than 
dictated by a strict 3-month schedule. As an example, consider 
a site sampled in January, late March, July, and October during 
a particular year. The source collecting these data is clearly 
collecting quarterly samples; however, the sample that should 
have been collected in April was collected in late March. 
Without a flexible quarter definition, this year would not have 
had quarterly sampling. This flexible method of defining 
quarters also provides a buffer for sources that sample rivers 
that may freeze in the winter. For various reasons, including 
the weather, a winter quarterly sample may need to be 
collected anytime between November and February.

Coverage of Changing Streamflow

Sediment concentrations also vary in response to changes 
in streamflow (Williams, 1989; Meybeck and others, 2003). 
Samples representing a range of streamflow conditions are 
needed to fully characterize changes in concentration over 
time. Low- or moderate-flow samples are not in short supply. 
To identify high-flow samples, streamflow on the date of 
each sample was compared to the 85th percentile of flows 
in that month during the corresponding decade of the trend 
period at that site (depending on the trend period, that would 
include some or all of the following decades: 1972–81, 
1982–91, 1992–2001, and 2002–12). For example, for a 
sample collected on March 1, 1998, the 85th percentile of all 
daily streamflows in March during the decade 1992–2001 was 
determined. If the streamflow on March 1, 1998, was greater 
than the 85th percentile of March streamflows during that 
decade, the sample was considered to be a high-flow sample. 
This assessment was completed by decade rather than once for 
the full trend period to ensure that samples at high streamflows 
were distributed throughout the trend period, rather than 

potentially being concentrated in one part of it. It also allowed 
for the identification of high-flow samples collected during 
prolonged low-flow periods (for example, droughts). Such 
high-flow samples would have been collected during flows 
that were elevated relative to an unusually low baseline; the 
flows may not have been particularly high relative to overall 
average conditions at a site.

To ensure appropriate streamflow coverage, at least 14 
percent of the samples were required to be high-flow samples 
in at least half of the decades assessed during the trend period. 
In the other half of the decades, at least 10 percent of the 
samples were required to be high-flow samples. The relaxation 
of the 14-percent criterion to 10 percent in some decades 
was necessary to accommodate sites with changing sampling 
designs over time (for example, the collection of high-flow 
samples increased somewhat or decreased somewhat over 
time). For the shortest trend period (2002–12) of only one 
decade, at least 14 percent of the samples were required to be 
high-flow samples during that period. These thresholds were 
based on sensitivity testing described in the “Storm Sampling” 
section of this report.

Data Used in Model Calibration

For site and parameter combinations that met the 
screening criteria, all available data before, during, and after 
the trend period (and if applicable, during any gaps) were 
retained to improve the model calibration (see the “Influence 
of New Data on Trend Estimates” section). Ultimately, model 
estimates only during the screened trend period were retained. 
In the case of longer records with data in two different decades 
separated by gaps, model estimates made in the years between 
the beginning and ending decades were excluded. Model input 
data are available in De Cicco and others (2017). 

Multiple steps were used to determine the final trend 
model input values used in this study. Note that because of 
the use of unrounded data from NWIS and the use of interval 
censoring, the final USGS values used in this study will not 
always match the corresponding value stored in the NWIS 
database.

There were 611 sites evaluated for sediment trends with 
620 combinations of sites and parameters. Table 5 summarizes 
the number of sites evaluated for each parameter and trend 
period. A complete list of sites and parameters evaluated for 
sediment trends is reported in appendix 1, table 1–6.

Major Ion and Salinity Parameters of Interest 
and Harmonization

The target parameters for trend analysis were chloride, 
sulfate, calcium, magnesium, potassium, sodium, specific 
conductance (SC), and total dissolved solids (TDS). 
Parameters that clearly were not a variation on the target 
parameters (for example, sodium plus potassium and sodium 
adsorption ratio) were excluded. Some major ion and salinity 
parameters were ambiguous and were only used when the 
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source specified their interpretation of the parameter (for 
example, some sources specified that solids be used to 
mean TDS and others used solids but did not specify their 
interpretation).

Naming conventions for a single parameter varied widely 
among data sources. For example, all of the variations on 
sulfate are shown in appendix 2, table 2–3. Numerous steps 
were taken to harmonize different parameter names that 
represented the same chemical. In some cases, the chemical 
represented by the parameter name was not clear. The majority 
of chloride, sulfate, calcium, magnesium, potassium, and 
sodium records were unambiguous, but SC and TDS records 
required more effort to harmonize. Metadata critical to 
identifying and quantifying each data value—such as filtration 
status, units, and chemical form (molecular or elemental)—
often were incomplete, rendering the data value ambiguous. 
When any of these critical metadata were missing, the data 
were not used. In select cases, agencies were contacted to fill 
in metadata gaps.

Unlike the other parameters, SC is often determined 
in the field. The SC should be temperature corrected (Hem, 
1985), and unless otherwise specified, values were assumed 
to be corrected. Records that were obviously not temperature 
corrected were excluded. Field samples were preferred over 
laboratory values when both were present.

The TDS values are commonly determined using one 
of three methods: (1) multiprobe, (2) sum of parameters, 
or (3) gravimetric (residue on evaporation at 105 °C or 
180 °C). The sum of parameters and gravimetric methods 
measure the dissolved mineral matter in the water, but when 
TDS is determined using a multiprobe meter, SC (electrical 
conductance) is actually the parameter being measured, and 
a conversion factor is used to calculate TDS. While electrical 
conductance is related to ion concentrations, the relation 
cannot be expected to be simple in natural waters (Hem, 
1985). The conversion factor commonly used to determine 
TDS from SC is 0.6, but the actual ratio of SC to TDS in 
natural waters generally varies between 0.55 and 0.75 (and 
can vary between 0.54 and 0.96) (Hem, 1985). This relation 
ideally should be determined for each site, and the use of a 
generic conversion factor can produce incorrect TDS values, 
especially if there is a large range in SC at a site. The TDS 
values determined by gravimetric methods and by summation 
of parameter concentrations are comparable (Hem, 1985; 
Tillman and Anning, 2014); therefore, only TDS values 
determined in the laboratory using gravimetric methods or 
sum of parameter methods were used in this study. Parameter 
code, method code, parameter name, and filtration status 
were used to identify TDS values that were determined by 
sum of parameters or combustion methods. In many cases, it 
was unclear what the parameter name TDS was intended to 
represent. When the meaning of TDS could not be determined 
unambiguously, the associated data were not used. 

Any data values that were reported without units, such 
that it could not be unambiguously determined whether they 
were reported in milligrams per liter, micrograms per liter, 

or some other unit were excluded. Any sulfate data values 
that were reported without form, such that it could not be 
unambiguously determined whether they were reported in 
elemental form (for example, sulfate as sulfur [as S]) or in 
molecular form (for example, sulfate as SO4

2-) also were 
excluded. In both cases, the choice of units or form commonly 
could alter the value substantially. For example, a sulfate 
concentration reported as SO4

2- would be three times larger than 
the same sulfate concentration reported as S.

All remaining chloride, sulfate, calcium, magnesium, 
potassium, sodium, and TDS concentration data with complete 
and unambiguous metadata were converted to milligrams per 
liter. The SC concentration values were converted to micromohs 
per centimeter (µmohs/cm). The microsiemens (µS) is 
numerically the same as the micromoh (Hem, 1985). Converted 
concentrations were rounded to the number of decimal places in 
the original value, with the exception of values converted only 
from micrograms per liter to milligrams per liter (because of the 
possibility of rounding a converted value to zero).

Major Ion and Salinity Data Processing 

 In order to reduce the nutrient dataset to a more 
reasonable size and to eliminate sites with very limited data 
that were not suitable for trend analysis, only sites that had at 
least 3 years of consecutive nutrient data with at least quarterly 
sampling initially were retained. Details on how quarters were 
defined can be found in the “Coverage of Changing Seasons” 
section in this report. 

Unfiltered and Filtered Fractions

Combining fractions (unfiltered, filtered, total, and 
unknown) may be necessary to extend the period of record in 
time or fill gaps in time, but it does introduce variability, which 
can make trend determination more difficult. Because filtered 
samples composed at least 80 percent of the total samples for 
calcium, magnesium, potassium, and sodium, fractions were not 
combined and only filtered (dissolved) values were used. 

The SC measurements should be made in-situ or in 
unfiltered samples whenever possible (Hem, 1985). Filtered 
or dissolved measurements constituted a very small amount 
(less than 10 percent) of the total SC measurements and were 
excluded from this study. The TDS concentrations were used 
only when it could be determined that the result was based on a 
filtered sample using filtration status, parameter name, and (or) 
analysis method. 

Discrete Samples

Discrete samples were used in the study to avoid 
introducing sampling inconsistency. Composite samples—
multiple discrete samples collected over an extended period of 
time (often more than 24 hours or throughout a storm event) 
that were composited together into a single sample—were 
excluded from the study.
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Samples Analyzed in the Field

To maintain basic comparability in precision and 
accuracy of analytical determinations, data were restricted 
to samples analyzed in laboratories (except for SC where 
field values were preferred). Remark codes on samples (for 
example, Virginia Department of Environmental Quality 
remark code H: “Value based on field kit determination; may 
not be accurate”) and sample type (“Field Msr/Obs”) were 
used to identify samples that were analyzed in the field. It was 
particularly important to remove TDS values that had been 
determined in the field using a multiprobe that was actually 
measuring SC and using a generic formula to calculate TDS. 
As mentioned in the “Major Ion and Salinity Parameters of 
Interest and Harmonization” section, parameter code, method 
code, and parameter name were used to verify that TDS values 
were determined in the laboratory. Information on whether 
the samples were analyzed in the field or laboratory was not 
always provided, so some samples that were analyzed in the 
field may have been inadvertently retained. 

Remark Code Harmonization

There were over 1,400 unique remark codes in the 
original dataset including all parameters. Many of these were 
not defined, and many others were ambiguously defined. Data 
with undefined or ambiguous remark codes were excluded. 
Of most interest for this study were remark codes indicating 
poor data quality (for example, “Contamination present in the 
sample”) and remark codes indicating censored data or data 
below a laboratory detection limit. Data with one or more 
remark codes indicating poor data quality were excluded. 
Data with a remark code indicating laboratory censoring were 
retained. There were about 65 unique remark codes in the data 
indicating laboratory censoring; these were unified under a 
single remark code of “<.” In some cases, there was no remark 
code provided, but a comment field associated with a data 
value indicated that the value was censored; these values also 
were given a remark code of “<.”

Some sources reported a censored remark code for an 
observation but did not report an associated value. When 
more than 1 percent of the data for a parameter at a site had 
a censored remark code but no values, then all of the data 
(censored and uncensored) for that site and parameter were 
excluded. When less than 1 percent of the data for a parameter 
at a site had a censored remark code with a missing value, and 
censored values were reported for other observations, then 
the missing censored values were set to the reported censored 
value that was closest in time for that site and parameter. 

In some cases when an agency reported data with 
censored remark codes, units were provided for uncensored 
data but not for censored data. Again, the reasons for 
this practice are unknown, but it creates the potential for 
substantially biased analyses if only the censored data were 
excluded because the units were missing. If all of the missing 
units were for censored data for a parameter from a given 
source, and all uncensored data were reported in the same 

units throughout the record (for example, all uncensored 
data for a parameter were reported in units of milligrams per 
liter or micrograms per liter), then those same units were 
assumed to apply to all censored data for that parameter from 
that source. If necessary, all retained data were converted to 
milligrams per liter. 

Recensoring U.S. Geological Survey Data

On October 1, 1998, the NWQL began implementing new 
reporting conventions for nondetections (Oblinger Childress 
and others, 1999). Prior to October 1, 1998, nondetections 
were censored to a MDL, the concentration at which the risk 
of a false positive detection (analyte reported as present at 
the MDL when not in the sample) is no more than 1 percent, 
or to a MRL, an inconsistently defined level of detection 
capability. The NWQL deemed the use of inconsistent MRLs 
as inappropriate and also observed that the risk of a false 
negative occurrence at the MDL (analyte reported as not 
present when present at the MDL concentration) could be as 
much as 50 percent. To make the determination of detection 
limits more consistent and to reduce the risk of false negatives 
to no more than 1 percent, the NWQL began using a LRL in 
combination with a LT–MDL on October 1, 1998, based on 
Oblinger Childress and others (1999). The LRL typically was 
twice the LT–MDL. Between October 1, 1998, and October 1, 
2010, concentrations measured between the LRL and the LT–
MDL were reported as estimated concentrations with an “E” 
remark code and nondetections were censored to the higher 
LRL. Beginning on October 1, 2010, the NWQL censored 
inorganic nondetections to the LT–MDL (https://water.usgs.
gov/admin/memo/QW/qw10.07.html).

The reporting convention in place between October 1, 
1998, and October 1, 2010, creates potential bias in statistical 
analyses because it improperly represents the proportions of 
the data below the LT–MDL and the LRL (Helsel, 2005). In 
particular, any observations that are truly below the LT–MDL 
will be reported as censored at the higher LRL; thus, the 
probability that an observation falls between the LT–MDL 
and the LRL may be overestimated, and the probability that 
it falls below the LT–MDL may be underestimated (Helsel, 
2005). Depending on the true percentage of data below the 
LT–MDL, this can cause an upward bias that will adversely 
affect statistical analyses when these affected data are pooled 
with data subject to conventional censoring (that is, data not 
recensored from the LT–MDL to the LRL). To avoid this 
problem, there are two potential solutions: (1) The LT–MDL 
becomes the reporting limit. Values reported as censored 
at the higher LRL are recensored to the lower LT–MDL. 
Uncensored “E” values between the LT–MDL and the LRL 
are not recensored. (2) The LRL becomes the reporting limit. 
All uncensored “E” values below the LRL are censored at 
the LRL. To retain the extra information captured by the “E” 
values, the first solution was used for USGS data from NWQL 
that were originally reported using the LRL approach. The 
“E” remark code may have been applied to other values for 

https://water.usgs.gov/admin/memo/QW/qw10.07.html
https://water.usgs.gov/admin/memo/QW/qw10.07.html


Methods    47

unrelated performance-based reasons, as described in Oblinger 
Childress and others (1999); these values were unchanged.

Similar to the description in the “Adjustments to U.S. 
Geological Survey Data Based on Historical Memorandums 
and Reports” section, these adjustments were applied to data 
from the NWIS database that had the analyzing entity defined 
as NWQL or when the analyzing entity was missing. For 
data analyzed at other laboratories, metadata documenting 
reporting conventions for censored data were not readily 
available; therefore, all censored data from laboratories other 
than the NWQL were unaltered.

Duplicate Samples 

It was not uncommon to have received the same water-
quality data for the same site and collection date from 
more than one source during the data compilation effort. 
Duplicates were defined as samples from the same site, date, 
time, and fraction. Duplicate samples were removed from 
the dataset. It was not possible to determine which of the 
duplicate samples should be removed based solely on data 
source because sometimes one source provided longer or 
more completely populated records for some parameters but 
not all (for example, there may have been duplicate data that 
were obtained from STORET and provided directly by a State 
agency, but overall the STORET record was longer for sulfate 
and the State record was longer for chloride). As a result, each 
parameter was considered separately when deciding which 
duplicate samples to retain and which to exclude. Note that 
duplicate samples did not always have identical values for 
a given parameter. If one of the duplicate samples was from 
USGS and one was from another agency, the USGS sample 
was retained. If both were USGS samples (for example, the 
duplicate samples were obtained from two different USGS 
NWIS servers), the sample from the primary host server 
(home State for each site) was retained. If information on the 
primary host server was not available, one of the duplicate 
samples was randomly retained. If both samples were from 
agencies other than USGS, and one sample had been provided 
by the CBP, then the sample from the CBP was retained. If 
both samples were from agencies other than USGS and the 
CBP, then the sample from the longest period of record was 
retained. Note that priority was not given to USGS samples 
because of an a priori expectation that USGS data were of 
better quality, but because typically more metadata were 
available on how samples were collected, analyzed, and 
stored. 

Zero, Negative, and Missing Concentration Values

An analytical determination of zero or negative 
concentration is not possible, so zero or negative values in the 
data were considered suspect. For a given site and parameter 
combination, if a censored remark code was frequently 
associated with a zero or negative concentration value, all 
zero and negative values were assumed to represent censored 
values and were set to the reported censored value that was 

closest in time for that site and parameter combination. In 
addition, missing values that were reported with a censored 
remark code were assumed to be censored values without an 
associated laboratory detection limit. These values were also 
set to the reported censored value that was closest in time for 
that site and parameter combination. If there were no reported 
censored values for a site and parameter combination, then 
zero, negative, or missing censored concentration values were 
set to the lowest uncensored value for that site and parameter 
combination and a censored remark code was assigned.

In some cases, these assumptions may have resulted in 
an incorrect value. For example, the zero, negative, or missing 
censored values may have been from samples that were not 
analyzed in the same laboratory as other samples for the given 
parameter, or samples for which there was some laboratory 
error. Alternatively, the assumed detection limit assigned to 
these values may be wrong. The approach used in this study 
to populate zero, negative, or missing censored values was 
unlikely to affect the subsequent trend results when such 
values collectively constituted a small fraction of the total 
data for a site and parameter combination; therefore, when 
zero, negative, and missing censored values made up more 
than 1 percent of the overall dataset for a site and parameter 
combination, all data for that site and parameter combination 
were not included in the determination of trend.

Identification of a Colocated or Nearby Streamgage 

Following the steps described in the previous subsections 
of the “Major Ion and Salinity Data Processing” section, 
all site and parameter combinations with at least 3 years 
of consecutive data with at least quarterly sampling (see 
“Coverage of Changing Seasons” section in this report for 
details on how quarters were defined) were paired with a 
streamgage from the final site-streamgage list assembled in 
the “Streamgage Selection” section of this report. Any site 
not meeting these minimum data requirements and without 
an acceptable streamgage match was excluded from further 
consideration. 

Merging Colocated or Neighboring Water-Quality Sites

For each target parameter, sites that had at least 3 years 
of consecutive data with at least quarterly sampling (see 
“Coverage of Changing Seasons” section in this report for 
details on how quarters were defined) were retained initially. 
All other sites were excluded. The retained sites represented 
two classes of sites: (1) sites that had a sufficient amount of 
data over a long enough period of record to possibly be used 
on their own for trend analysis (stand-alone sites), and (2) sites 
that had a shorter period of record (composite sites) that could 
be combined with other colocated or neighboring composite 
sites to form a single record for trend analysis or a colocated 
or neighboring stand-alone site to increase the number of 
trend periods that could be evaluated at the stand-alone site. 
Stand-alone and composite sites were only combined when 
additional trend periods could be evaluated after combining; 
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they were not combined to fill in short gaps or otherwise 
add to the existing data at the stand-alone site. Data from 
a composite site could have been used to fill in short gaps 
or add to the existing data at the stand-alone site; likewise, 
data covering periods shorter than 3 years could have been 
used to fill in gaps or extend the record at other composite or 
stand-alone sites because it was decided that the nonrandom 
variability introduced into those types of combined time series 
would outweigh the benefits during trend analysis. 

Following methods described in the “Streamgage 
Matching” section, potential colocated and neighboring sites 
were identified, and sites with intervening influences were 
excluded. A maximum of two sites was combined to minimize 
nonrandom variability. If more than two sites were available, 
then the primary site (the site with the longest record) was 
identified, and each of the remaining sites were prioritized 
based on how well the data merged with the primary record. 
If more than one of the remaining sites merged well with 
the primary record, then the site with the longest record 
was retained. A list of composite sites with the individual 
sites for each parameter used in trend analysis can be found 
in appendix 1, table 1–7. The subsequent processing steps 
described below were applied to the data record for merged 
sites and any remaining stand-alone sites.

Degree of Censoring

Following guidelines suggested for the trend method 
used in this study, site and parameter combinations with more 
than 50 percent censoring were excluded from trend analysis 
(Hirsch and De Cicco, 2015). Left-censored and interval-
censored values, if less than 50 percent of the dataset, were 
included in this determination. Right-censored data were 
removed from the dataset.

Outliers

A small number of values in the dataset appeared to 
be typographical errors. For example, consider a case when 
reported SC concentrations in a river are between 260 µmohs/
cm and 300 µmohs/cm for several days, and then a SC 
concentration of 0.29 µmohs/cm is reported, followed by 
a week with reported concentrations between 280 µmohs/
cm and 320 µmohs/cm. It is extremely unlikely that SC 
concentrations would drop so low just for one intervening 
day. It is far more likely that there was a typographical 
error, and the true value is 290 µmohs/cm. In contrast, a SC 
concentration of 50,000 µmohs/cm is more ambiguous. That 
concentration is very high relative to concentrations found 
in most natural waters and is the approximate conductance 
of seawater (Hem, 1985), but it could occur in areas where 
subsurface brines contribute to surface water. In a smaller 
study involving far fewer sites and data sources, it might be 
possible to definitively establish the accuracy of ambiguous 
data points by checking laboratory records, field forms, or 
other sources of historical information, but that was not 

possible in a study of this size because of resource constraints, 
and only the most extreme outliers—those that were almost 
certainly typographical errors—were excluded. Under a 
normal distribution, 99.9999998 percent of the data should be 
within six standard deviations from the mean; only the most 
extreme values will be outside of that range. For each site 
and parameter pair, the data were divided into four seasons. 
Within each season, any data value further than six standard 
deviations from the mean in log space was excluded as a likely 
typographical error. With this approach, there was a risk that 
typographical errors representing less extreme values were 
retained. There was also a risk that values representative of 
true environmental conditions were excluded.

Data Thinning

The major ion and salinity trend model used in this 
study weights days with multiple water-quality samples 
more heavily than other days during calibration. As a result, 
data for each site and parameter combination were thinned 
to have no more than one sample per day. If there was more 
than one sample per day, one sample was randomly selected 
to be retained in the dataset. The presence of data points 
spaced closely together in time also can introduce serial 
correlation into a time series. With some trend methods, serial 
correlation can increase the probability of incorrectly rejecting 
the test’s null hypothesis of no trend, leading to an incorrect 
determination that a significant trend has occurred (Hirsch 
and Slack, 1984); The trend method in this study relied on 
bootstrapping to determine p-values (see “Nutrient, Sediment, 
Major Ion, Salinity, and Carbon Trend Analysis Method” 
section in this report), an approach that is less affected by 
serial correlation. For that reason, the datasets were not 
thinned for data points close in time on different days.

Final Screening for Data Coverage
Once data from colocated or neighboring sites had been 

merged, and the censoring, outlier, and data thinning steps had 
been completed, the resulting data series were screened again 
by parameter. In this final screening step, the requirements for 
data coverage were more stringent. All sites not meeting these 
criteria were excluded.

Coverage Throughout Target Trend Periods

•	 The target trend periods, in water years, were (1) 
1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 
2002–12. Data were permitted to begin in the specified 
start year or the following year. For example, a start 
year of either 1972 (October 1, 1971) or 1973 (October 
1, 1972) was acceptable in trend period 1, but 1974 
(October 1, 1973) was not. Data were permitted to 
end in the specified start year or the preceding year. 
An end year of either 2011 (September 30, 2011) or 
2012 (September 30, 2012) was acceptable in all trend 
periods, but 2010 was not. 
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•	 The first 2 years and the last 2 years of a trend period 
were required to have at least quarterly samples. See 
the “Coverage of Changing Seasons” section below for 
more detail on how quarters were defined.

•	 Overall, 70 percent of all years during a trend period 
were required to have at least quarterly samples. Any 
gap must have occurred in the middle of the record. 

•	 Longer gaps in quarterly data were permitted when 
there was at least a 10-year span meeting the criteria 
beginning in any of the start years (for example, data 
from 1972 to 1981 or 1982 to1991) and a 10-year span 
meeting the criteria ending in either 2011 or 2012. 
Data during each of those decades must have met the 
other criteria detailed here. Gaps of any length were 
permitted in the years between the beginning and 
ending decades. 

•	 At least 14 percent of the samples were required to 
be high-flow samples in at least half of the decades 
assessed during a given trend period in order to ensure 
the full range of flows were represented. In the other 
half of the decades, at least 10 percent of the samples 
were required to be high-flow samples. For the shortest 
trend period (2002–12) of one decade, at least 14 
percent of the samples were required to be high-flow 
samples. See the “Coverage of Changing Streamflow” 
section below for more detail on how high-flow 
samples were defined.

Coverage of Changing Seasons

Major ion and salinity concentrations vary throughout 
the year in response to changes in temperature (evaporation 
and evapotranspiration) and source water (Hem, 1985; Drever, 
1997; Anning, 2003; Kaushal and others, 2005; Anning and 
others 2006). Samples representing seasonal conditions 
throughout the year are needed to fully characterize changes 
in concentration. To ensure seasonal coverage, 70 percent of 
years during a trend period were required to have at least one 
sample per quarter; the remaining 30 percent of years could 
be missing some or all quarterly samples. This allowed for 
reasonable changes in sampling design over time. 

To evaluate seasonal coverage, the water year was 
divided into quarters using three different divisions of the 
water year (table 4). Each quarter consisted of 3 calendar 
months (table 4). A site was accepted if the samples met 
any one of the quarterly definitions in table 4; the quarterly 
definition was permitted to vary from year to year. This 
method of testing for quarterly samples accommodated 
variations in real-world sampling schedules. The primary 
sampling-design artifact this accommodated was the 
occurrence of two samples in one quarter and none in the 
preceding or following quarter, which may have occurred if 
a sample was collected slightly earlier or slightly later than 
dictated by a strict 3-month schedule. As an example, consider 

a site sampled in January, late March, July, and October 
during a particular year. The source collecting these data is 
clearly collecting quarterly samples; however, the sample 
that should have been collected in April was collected in 
late March. Without a flexible quarter definition, this year 
would not have had quarterly sampling. This flexible method 
of defining quarters also provides a buffer for sources that 
sample rivers that may freeze in the winter. For various 
reasons, including the weather, a winter quarterly sample 
may need to be collected anytime between November 
and February.

Coverage of Changing Streamflow

Major-ion concentrations and salinity also vary in 
response to changes in streamflow (Hem, 1985; Langmuir, 
1997). Samples representing a range of streamflow 
conditions are needed to fully characterize changes in 
concentration over time. Low- or moderate-flow samples 
are not in short supply. To identify high-flow samples, 
streamflow on the date of each sample was compared 
to the 85th percentile of flows in that month during the 
corresponding decade of the trend period at that site 
(depending on the trend period, that would include some or 
all of the following decades: 1972–81, 1982–91, 1992–2001, 
and 2002–12). For example, for a sample collected on 
March 1, 1998, the 85th percentile of all daily streamflows 
in March during the decade 1992–2001 was determined. 
If the streamflow on March 1, 1998, was greater than the 
85th percentile of March streamflows during that decade, 
the sample was considered to be a high-flow sample. This 
assessment was completed by decade rather than once for the 
full trend period to ensure that samples at high streamflows 
were distributed throughout the trend period, rather than 
potentially being concentrated in one part of it. It also 
allowed for the identification of high-flow samples collected 
during prolonged low-flow periods (for example, droughts). 
Such high-flow samples would have been collected during 
flows that were elevated relative to an unusually low 
baseline; the flows may not have been particularly high 
relative to overall average conditions at a site.

To ensure appropriate streamflow coverage, at least 14 
percent of the samples were required to be high-flow samples 
in at least half of the decades assessed during the trend 
period. In the other half of the decades, at least 10 percent 
of the samples were required to be high-flow samples. The 
relaxation of the 14 percent criterion to 10 percent in some 
decades was necessary to accommodate sites with changing 
sampling designs over time (for example, the collection 
of high-flow samples increased somewhat or decreased 
somewhat over time). For the shortest trend period (2002–
12) of only one decade, at least 14 percent of the samples 
were required to be high-flow samples during that period. 
These thresholds were based on sensitivity testing described 
in the “Storm Sampling” section of this report.
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Data Used in Model Calibration

For site and parameter combinations that met the 
screening criteria, all available data before, during, and after 
the trend period (and if applicable, during any gaps) were 
retained to improve the model calibration (see the “Influence 
of New Data on Trend Estimates” section). Ultimately, model 
estimates only during the screened trend period were retained. 
In the case of longer records with data in two different decades 
separated by gaps, model estimates made in the years between 
the beginning and ending decades were excluded. Model input 
data are available in De Cicco and others (2017). 

Multiple steps were used to determine the final trend 
model input values used in this study. Note that because of 
the recensoring of some USGS data, the use of unrounded 
data from NWIS, and the use of interval censoring, the final 
USGS values used in this study will not always match the 
corresponding value stored in the NWIS database.

There were 1,198 sites evaluated for major ion 
and salinity trends with 3,024 combinations of sites and 
parameters. Table 5 summarizes the number of sites evaluated 
for each parameter and trend period. A complete list of sites 
and parameters evaluated for major ion and salinity trends is 
reported in appendix 1, table 1–6.

Carbon Parameters of Interest and 
Harmonization

Carbon exists in inorganic and organic forms in aquatic 
ecosystems. Organic carbon refers to a wide range of chemical 
compounds containing at least one, and usually multiple, 
reduced carbon atoms (Drever, 1997). Organic carbon is 
the intact or partially decomposed remains of organisms 
including plants, microbes, and animals. In contrast, inorganic 
carbon contains only fully oxidized carbon atoms and exists 
in most environmental samples as bicarbonate, carbonate, 
and carbon dioxide (Butler, 1982). Alkalinity was used as 
the measurement of inorganic carbon because in natural 
waters bicarbonate is the primary contributor to alkalinity 
and typically the largest part of the inorganic carbon pool. 
Although carbon dioxide is an important component of 
inorganic carbon, it was not included in the analysis of 
inorganic carbon because a carbon dioxide concentration is 
highly dynamic, exchanging rapidly with organic material 
and with the atmosphere such that an analysis for trends in 
concentration is problematic.

The target parameters for trend analysis were alkalinity, 
dissolved organic carbon (DOC), and total organic carbon 
(TOC). Because these analytes were sometimes reported 
directly and sometimes calculated from other parameters, all 
available data were retained for alkalinity, acid neutralizing 
capacity, acidity, bicarbonate, carbonate, dissolved organic 
carbon, particulate organic carbon, and total organic carbon. 
Naming conventions for a single parameter varied widely in 
the data. For example, some of the variations on alkalinity are 
shown in appendix 2, table 2–4. When a reported parameter 

name could be linked to a known parameter, the parameter 
names and units were harmonized. Numerous steps were taken 
to ensure that parameter names were properly represented in 
the harmonized dataset. In many cases, some aspect of the 
metadata (filtration status, units, chemical form) was unclear. 
When any of the critical metadata were missing, the data were 
considered incompatible with the larger dataset and were 
excluded from analysis.

The metadata required for organic carbon analysis were 
similar to other parameters included in this study. It was 
critical to know filtration status and units on all samples. 
Trends in TOC and DOC were analyzed separately because 
they express different fractions of carbon within samples. For 
example, a change in suspended organic material can induce 
a trend in TOC but is not likely to induce trends in DOC. 
Similarly, changing sample fractions from filtered to unfiltered 
could induce a trend because particles are included in the latter 
analysis.

The harmonization of alkalinity parameters requires 
particular focus on the reported units and chemical form and 
the method of alkalinity analysis. Alkalinity is often reported 
as milligrams per liter as calcium carbonate (CaCO3), but it 
can also be reported as microequivalents per liter, milligrams 
per liter as bicarbonate (HCO3

-), and others. For consistency, 
all alkalinity measurements were converted to milligrams per 
liter as CaCO3. Alkalinity reporting units varied widely and 
were sometimes difficult to relate to milligrams per liter as 
CaCO3. In such cases, the data were excluded from analysis. 
Another common ambiguity in the data was the use of the 
term “carbonate alkalinity,” which can refer to (1) alkalinity 
arising from the carbonate buffering system, which should be 
dominant in most natural waters; or (2) alkalinity arising from 
the presence of carbonate ion at high pH. The latter definition 
is also sometimes called phenolphthalein or phenol alkalinity 
because of the historical use of the phenolphthalein indicator 
to end titration at pH 8.3 (Hem, 1985). In cases when the 
definition of carbonate alkalinity could not be unambiguously 
determined from the metadata provided, the samples were 
excluded.

Alkalinity was commonly determined by sequential 
titration of a sample to pH 8.3 and then to pH 4.5, which 
expresses concentrations of CO3

2- and HCO3
-, respectively. 

When HCO3
- was reported, and it could be determined 

from the metadata that this referred to titration from 8.3 to 
4.5, a total alkalinity concentration was determined using 
pH and temperature information. Total alkalinity based 
on the carbonate system is the equivalent sum of HCO3

-, 
carbonate (CO3

2-), and hydroxide (OH-). OH- was assumed 
to be negligible because it is a small part of total alkalinity 
at environmentally relevant pH (less than 1 percent when 
pH is less than 9.5); likewise, at field pH less than 8, CO3

2- is 
a negligible part of total alkalinity (less than 0.4 percent) 
(Butler, 1982), and so total alkalinity was assumed to be equal 
to HCO3

- when field pH was less than 8. At pH greater than 8, 
CO3

2- was calculated based on carbonate equilibria, and total 
alkalinity was assumed to be CO3

2- + HCO3
-.
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where
	 K	 is	 field temperature, in degrees Kelvin 

(Plummer and Busenberg, 1982).
Similar to other parameters used in this study, 

temperature and pH data were subjected to screening for 
appropriate units, metadata, and values in the database 
before using in the carbonate equilibria calculations. If a 
sample required pH and temperature data for appropriate 
interpretation and the data were missing or ambiguous, then 
the sample was excluded from the analysis.

Carbon Data Processing 

In order to reduce the carbon dataset to a more reasonable 
size and to eliminate sites with very limited data that were not 
suitable for trend analysis, only sites that had at least 3 years 
of consecutive nutrient data with at least quarterly sampling 
initially were retained. Details on how quarters were defined 
can be found in the “Coverage of Changing Seasons” section 
in this report. 

Unfiltered and Filtered Fractions

Carbon exists in the dissolved and particulate phases of 
water samples. Particulate organic carbon (POC) is composed 
of sediments of terrestrial or fluvial origin, phytoplankton 
cells, detritus from macrophytes or higher plants, and larger 
microbial cells or colonies. Previous studies have shown that 
the particulate phase represents around 15 percent of total 
organic material in rivers (Stets and Striegl, 2012), but this 
amount varies greatly among river systems and at different 
streamflow conditions; therefore, metadata distinguishing 
between filtered and unfiltered samples were necessary for the 
inclusion of organic carbon samples in this trend study. TOC, 
POC, and DOC were treated as separate parameters.

In contrast to organic carbon, alkalinity exists primarily 
in the dissolved fraction, with a minor contribution from the 
particulate phase. Particulate inorganic carbon can arise from 
sediments or from in-situ formation of CaCO3 particles under 
conditions of high temperature and pH, but the contribution 

of this material to overall alkalinity is expected to be small. 
An analysis done by Stets and Striegl (2012) determined that 
particulate inorganic carbon was a very small percentage of 
total inorganic carbon, indicating that the bulk of inorganic 
carbon, and of alkalinity, resides in the dissolved pool. Based 
on the results of Stets and Striegl (2012) and in the “Paired 
Sample Evaluation” section of this report, filtered and 
unfiltered alkalinity were considered to be indistinguishable 
in this study and data for both fractions were combined. 
Alkalinity data also were accepted from agencies that did not 
specify a fraction in the metadata because either fraction was 
acceptable. When filtered, unfiltered, and (or) missing fraction 
results were present in a single sample, the priority for use in 
trend analysis was unfiltered, then filtered, and then missing. 

Discrete Samples

Discrete samples were used in the study to avoid 
introducing sampling inconsistency. Composite samples—
multiple discrete samples collected over an extended period of 
time (often more than 24 hours or throughout a storm event) 
that were composited together into a single sample—were 
excluded from the study.

Samples Analyzed in the Field

To maintain basic comparability in precision and 
accuracy of analytical determinations, the TOC, DOC, and 
POC data were restricted to samples analyzed in laboratories. 
In contrast to other parameters in this study, field alkalinity 
values obtained by titration are considered to be of high 
quality, and field titration is the preferred analytical method 
over laboratory titrations. Field and laboratory alkalinity was 
compared in paired samples from 92 sites. Most observations 
fell within 10 percent of each other, and the median difference 
between laboratory and field alkalinity was 0 percent, and the 
average difference was 0.1 percent. The largest differences 
occurred at sites with low alkalinity (less than 30 mg/L as 
CaCO3) emphasizing that differences largely occur because 
of imprecision in the methods at low alkalinity or because 
of errors introduced when rounding. No evidence of sample 
bias was found between alkalinity samples run in the field 
compared to the laboratory, so samples analyzed by either of 
these methods were considered acceptable for this study. Field 
alkalinity measured by field kits rather than by titration were 
excluded from this analysis.

Remark Code Harmonization

There were over 1,400 unique remark codes in the 
original dataset including all parameters. Many of these were 
not defined, and many others were ambiguously defined. Data 
with undefined or ambiguous remark codes were excluded. 
Of most interest for this study were remark codes indicating 
poor data quality (for example, “Contamination present in 
the sample”) and remark codes indicating censored data or 
data below a laboratory detection limit. Data with one or 
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more remark codes indicating poor data quality were excluded. 
Data with a remark code indicating laboratory censoring were 
retained. There were about 65 unique remark codes in the data 
indicating laboratory censoring; these were unified under a 
single remark code of “<.” In some cases, there was no remark 
code provided, but a comment field associated with a data value 
indicated that the value was censored; these values also were 
given a remark code of “<.”

Some sources reported a censored remark code for an 
observation but did not report an associated value. When 
more than 1 percent of the data for a parameter at a site had 
a censored remark code but no values, then all of the data 
(censored and uncensored) for that site and parameter were 
excluded. When less than 1 percent of the data for a parameter 
at a site had a censored remark code with a missing value and 
censored values were reported for other observations, then the 
missing censored values were set to the reported censored value 
that was closest in time for that site and parameter. 

In some cases when an agency reported data with censored 
remark codes, units were provided for uncensored data but not 
for censored data. The reasons for this practice are unknown, 
but it creates the potential for substantially biased analyses if 
only the censored data were excluded because the units were 
missing. If all of the missing units were for censored data for 
a parameter from a given source, and all uncensored data were 
reported in the same units throughout the record (for example, 
all uncensored data for a parameter were reported in units 
of milligrams per liter or micrograms per liter), then those 
same units were assumed to apply to all censored data for that 
parameter from that source. If necessary, all retained data were 
converted to milligrams per liter.

Recensoring U.S. Geological Survey Data

On October 1, 1998, the NWQL began implementing new 
reporting conventions for nondetections (Oblinger Childress 
and others, 1999). Prior to October 1, 1998, nondetections were 
censored to a MDL, the concentration at which the risk of a 
false positive detection (analyte reported as present at the MDL 
when not in the sample) is no more than 1 percent or to a MRL, 
an inconsistently defined level of detection capability. The 
NWQL deemed the use of inconsistent MRLs as inappropriate 
and also observed that the risk of a false negative occurrence 
at the MDL (analyte reported as not present when present at 
the MDL concentration) could be as much as 50 percent. To 
make the determination of detection limits more consistent and 
to reduce the risk of false negatives to no more than 1 percent, 
the NWQL began using a LRL in combination with a LT–MDL 
on October 1, 1998, based on Oblinger Childress and others 
(1999). The LRL typically was twice the LT–MDL. Between 
October 1, 1998, and October 1, 2010, concentrations measured 
between the LRL and the LT–MDL were reported as estimated 
concentrations with an “E” remark code and nondetections were 
censored to the higher LRL. Beginning on October 1, 2010, 
the NWQL censored inorganic nondetections to the LT–MDL 
(https://water.usgs.gov/admin/memo/QW/qw10.07.html).

The reporting convention in place between October 1, 
1998, and October 1, 2010, creates potential bias in statistical 
analyses because it improperly represents the proportions 
of the data below the LT–MDL and the LRL (Helsel, 2005). 
In particular, observations that are truly below the LT–MDL 
will be reported as censored at the higher LRL; thus, the 
probability that an observation falls between the LT–MDL 
and the LRL may be overestimated, and the probability that 
it falls below the LT–MDL may be underestimated (Helsel, 
2005). Depending on the true proportion of data below the 
LT–MDL, this can cause an upward bias that will adversely 
affect statistical analyses when these affected data are pooled 
with data subject to conventional censoring (that is, data not 
recensored from the LT–MDL to the LRL). To avoid this 
problem, there are two potential solutions: (1) The LT–MDL 
becomes the reporting limit when values reported as censored 
at the higher LRL are recensored to the lower LT–MDL. 
Uncensored “E” values between the LT–MDL and the LRL are 
not recensored. (2) The LRL becomes the reporting limit when 
all uncensored “E” values below the LRL are censored at 
the LRL. To retain the extra information captured by the “E” 
values, the first solution was used for USGS data from NWQL 
that were originally reported using the LRL approach. The 
“E” remark code may have been applied to other values for 
unrelated performance-based reasons, as described in Oblinger 
Childress and others (1999); these values were unchanged.

Similar to the description in the “Adjustments to U.S. 
Geological Survey Data Based on Historical Memorandums 
and Reports” section, these adjustments were applied to data 
from the NWIS database that had the analyzing entity defined 
as NWQL or when the analyzing entity was missing. For 
data analyzed at other laboratories, metadata documenting 
reporting conventions for censored data were not readily 
available; therefore, all censored data from laboratories other 
than the NWQL were unaltered. 

Duplicate Samples 

It was not uncommon to receive the same water-quality 
data for the same site and collection date from more than 
one source during the compilation of data. Duplicates were 
defined as samples from the same site, date, time, and fraction. 
Duplicate samples were removed from the dataset. It was not 
possible to determine which of the duplicate samples should 
be removed on the basis of data source because sometimes 
a source provided longer or more completely populated 
records for some parameters (for example, there may have 
been duplicate data obtained from STORET and provided 
directly by a State agency, but overall the STORET record was 
longer for alkalinity whereas the State record was longer for 
DOC). As a result, each parameter was considered separately 
when deciding which duplicate samples to retain and which 
to exclude. Note that duplicate samples did not always have 
identical values for a given parameter. If one of the duplicate 
samples was from USGS and one was from another agency, 
the USGS sample was retained. If both were USGS samples 

https://water.usgs.gov/admin/memo/QW/qw10.07.html
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(for example, the duplicate samples were obtained from 
two different USGS NWIS servers), the sample from the 
primary host server (home State for each site) was retained. 
If information on the primary host server was not available, 
one of the duplicate samples was randomly retained. If both 
samples were from agencies other than USGS, and one sample 
had been provided by the CBP, then the sample from the CBP 
was retained. If both samples were from agencies other than 
USGS and the CBP, then the sample from the longest period of 
record was retained. Note that priority was not given to USGS 
samples because of an a priori expectation that USGS data 
were of better quality, but because typically more metadata 
were available on how samples were collected, analyzed, 
and stored. 

Zero, Negative, and Missing Concentration Values

An analytical determination of zero or negative 
concentration is not possible, so zero or negative values in the 
data were considered suspect. Based on associated metadata—
namely, the frequent presence of a censored remark code with 
a zero or negative concentration value—all zero and negative 
values were assumed to represent censored values. As a result, 
all zero and negative values were set to the reported censored 
value that was closest in time for that site and parameter 
combination. In addition, missing values that were reported 
with a censored remark code were assumed to be censored 
values without an associated laboratory detection level. These 
values were also set to the reported censored value that was 
closest in time for that site and parameter combination. If there 
were no reported censored values for a site and parameter 
combination, then zero, negative, or missing censored 
concentration values were set to the lowest uncensored value 
for that site and parameter combination and a censored remark 
code was assigned.

In some cases, these assumptions may have resulted in 
an incorrect value. For example, the zero, negative, or missing 
censored values may have been from samples that were not 
analyzed in the laboratory or for samples with a laboratory 
error. Alternatively, the assumed detection limit assigned to 
these values may be wrong. The approach used in this study 
to populate zero, negative, or missing censored values was 
unlikely to affect the subsequent trend results when such 
values collectively constituted a small fraction of the total 
data for a site and parameter combination; therefore, when 
zero, negative, and missing censored values made up more 
than 1 percent of the overall dataset for a site and parameter 
combination, all data for that site and parameter combination 
were excluded. 

Calculation of Target Parameters

Alkalinity concentrations used for trend analysis were 
uniformly expressed as milligrams per liter as CaCO3, 
although alkalinity was commonly reported by data sources 
as milligrams per liter as HCO3

- or microequivalents per liter 
(µeq L-1). Conversion of reported HCO3

- to total alkalinity is 

discussed in the “Calculation of Target Parameters” section for 
carbon parameters of interest. Unit conversions to milligrams 
per liter as CaCO3 were performed as follows:
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Identification of a Colocated or Nearby Streamgage 

Following the steps described in the previous subsections 
of the “Carbon Data Processing” section, all site and 
parameter combinations with at least 3 years of consecutive 
data with at least quarterly sampling (see “Coverage of 
Changing Seasons” section in this report for details on how 
quarters were defined) were paired with a streamgage from 
the final site-streamgage list assembled in the “Streamgage 
Selection” section of this report. Any site not meeting these 
minimum data requirements and without an acceptable 
streamgage match was excluded from further consideration. 

Merging Colocated or Neighboring Water-Quality Sites

After assigning a streamgage to each site, the retained 
sites represented two classes of sites: (1) sites that had a 
sufficient amount of data over a long enough period of record 
(at least for the shortest trend period of 10 years) to be used on 
their own for trend analysis (single sites), and (2) sites that had 
data for a shorter period of record (at least 3 consecutive years 
of quarterly data) that could be combined into a composite 
site with other colocated or neighboring composite sites 
to form a single record for trend analysis or a colocated or 
neighboring stand-alone site to increase the number of trend 
periods that could be evaluated at the stand-alone site. Single 
and composite sites were only combined when additional 
trend periods could be evaluated after combining; they were 
not combined to only fill in short gaps or add to the existing 
data at the single site when the combination did not increase 
the number of trend periods that could be evaluated. Data for 
periods shorter than 3 years were not used to fill in gaps or 
extend the record at other composite or single sites because 
it was decided that the nonrandom variability introduced 
into those types of combined time series would outweigh the 
benefits during trend analysis. 

Following methods described in the “Streamgage 
Matching” section, potential colocated and neighboring 
sites were identified, and sites with intervening influences 
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were excluded. A maximum of two sites were combined to 
minimize nonrandom variability. If more than two sites were 
available, then the two sites with the longest period of record 
for the parameter of interest were selected for the composite 
site. If more than one of the remaining sites merged well 
with the primary record, then the site with the longest record 
was retained. A list of composite sites with the individual 
sites for each parameter used in trend analysis can be found 
in appendix 1, table 1–7. The subsequent processing steps 
described below were applied to the data record for merged 
sites and single sites.

Degree of Censoring

Following guidelines suggested for the trend method 
used in this study, site and parameter combinations with 
more than 50 percent censoring were excluded (Hirsch and 
De Cicco, 2015). Left-censored and interval-censored values 
were included in this determination. Right-censored data were 
removed from the dataset.

Outliers

A small number of values in the data appeared to be 
typographical errors. For example, a dissolved organic carbon 
concentration of 500 mg/L is extremely unlikely to occur in 
natural waters (Hanley and others, 2013). It is far more likely 
that the units were reported incorrectly and that the true value 
is 500 µg/L, or 0.5 mg/L. In contrast, a dissolved organic 
carbon concentration of 50 mg/L is more ambiguous. That 
concentration is very high relative to concentrations found 
in most natural waters (Clark and others, 2007), but it could 
occur during locally extreme conditions such as a heavy runoff 
event or anthropogenic inputs from wastewater or sewer 
overflows. In a smaller study involving far fewer sites and 
data sources, it might be possible to definitively establish the 
accuracy of ambiguous data points by checking laboratory 
records, field forms, or other sources of historical information, 
but that was not possible in a study of this size because of 
resource constraints, so only the most extreme outliers—
those that were almost certainly typographical errors—were 
excluded. Under a normal distribution, 99.9999998 percent 
of the data should be within six standard deviations from the 
mean; only the most extreme values will be outside of that 
range. For each site and parameter pair, the data were divided 
into four seasons. Within each season, any data value further 
than six standard deviations from the mean in log space was 
excluded as a likely typographical error. With this approach, 
there was a risk that typographical errors representing less 
extreme values were retained. There was also a risk that values 
representative of true environmental conditions were excluded. 

Data Thinning

The carbon trend model used in this study weights 
days with multiple water-quality samples more heavily than 
other days during calibration. As a result, data for each site 

and parameter combination were thinned to have no more 
than one sample per day. If there was more than one sample 
per day, one sample was randomly selected to be retained 
in the dataset. The presence of data points spaced closely 
together in time also can introduce serial correlation into a 
time series. With some trend methods, serial correlation can 
increase the probability of incorrectly rejecting the test’s null 
hypothesis of no trend, leading to an incorrect determination 
that a significant trend has occurred (Hirsch and Slack, 1984). 
The trend method in this study relied on bootstrapping to 
determine p-values (see “Nutrient, Sediment, Major Ion, 
Salinity, and Carbon Trend Analysis Method” section in this 
report), an approach that is less affected by serial correlation. 
For that reason, the datasets were not thinned for data points 
close in time on different days.

Final Screening for Data Coverage

Once data from colocated or neighboring sites had been 
merged, and the censoring, outlier, and data thinning steps had 
been completed, the resulting data series were screened again 
by parameter. In this final screening step, the requirements for 
data coverage were more stringent. All sites not meeting these 
criteria were excluded.

Coverage Throughout Target Trend Periods

•	 The target trend periods, in water years, were (1) 
1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 
2002–12. Data were permitted to begin in the specified 
start year or the following year. For example, a start 
year of either 1972 (October 1, 1971) or 1973 (October 
1, 1972) was acceptable in trend period 1, but 1974 
(October 1, 1973) was not. Data were permitted to 
end in the specified start year or the preceding year. 
An end year of either 2011 (September 30, 2011) or 
2012 (September 30, 2012) was acceptable in all trend 
periods, but 2010 was not. 

•	 The first 2 years and the last 2 years of a trend period 
were required to have at least quarterly samples. See 
the “Coverage of Changing Seasons” section below for 
more detail on how quarters were defined.

•	 Overall, 70 percent of all years during a trend period 
were required to have at least quarterly samples. Any 
gap must have occurred in the middle of the record. 

•	 Longer gaps in quarterly data were permitted when 
there was at least a 10-year span meeting the criteria 
beginning in any of the start years (for example, data 
from 1972 to 1981 or 1982 to 1991) and a 10-year span 
meeting the criteria ending in either 2011 or 2012. Data 
during each of those decades must have met the other 
detailed criteria. Gaps of any length were permitted in 
the years between the beginning and ending decades. 
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At least 14 percent of the samples were required to be 
high-flow samples in at least half of the decades assessed 
during a given trend period in order to ensure the full range 
of flows were represented. In the other half of the decades, 
at least 10 percent of the samples were required to be high-
flow samples. For the shortest trend period (2002–12) of 
one decade, at least 14 percent of the samples were required 
to be high-flow samples. See the “Coverage of Changing 
Streamflow” section below for more detail on how high-flow 
samples were defined.

Coverage of Changing Seasons

Carbon concentrations vary throughout the year in 
response to changes in sunlight, temperature, biological 
activity, and carbon sources (Boyer and others, 1998; 
Dalzell and others 2007; Raymond and Oh, 2007). Samples 
representing seasonal conditions throughout the year are 
needed to fully characterize changes in concentration. To 
ensure seasonal coverage, 70 percent of years during a trend 
period were required to have at least one sample per quarter; 
the remaining 30 percent of years could be missing some or 
all quarterly samples. This allowed for reasonable changes in 
sampling design over time. 

To evaluate seasonal coverage, the water year was 
divided into quarters using three different divisions of the 
water year (table 4). Each quarter consisted of 3 calendar 
months (table 4). A site was accepted if the samples met 
any one of the quarterly definitions in table 4; the quarterly 
definition was permitted to vary from year to year. This 
method of testing for quarterly samples accommodated 
variations in real-world sampling schedules. The primary 
sampling-design artifact this accommodated was the 
occurrence of two samples in one quarter and none in the 
preceding or following quarter, which may have occurred if 
a sample was collected slightly earlier or slightly later than 
dictated by a strict 3-month schedule. As an example, consider 
a site sampled in January, late March, July, and October during 
a particular year. The source collecting these data is clearly 
collecting quarterly samples; however, the sample that should 
have been collected in April was collected in late March. 
Without a flexible quarter definition, this year would not have 
had quarterly sampling. This flexible method of defining 
quarters also provides a buffer for sources that sample rivers 
that may freeze in the winter. For various reasons, including 
the weather, a winter quarterly sample may need to be 
collected anytime between November and February.

Coverage of Changing Streamflow

Carbon concentrations also vary in response to changes in 
streamflow (Dalzell and others, 2007). Samples representing a 
range of streamflow conditions are needed to fully characterize 
changes in concentration over time. Low- or moderate-flow 
samples are not in short supply. To identify high-flow samples, 
streamflow on the date of each sample was compared to the 
85th percentile of flows in that month during the corresponding 

decade of the trend period at that site (depending on the 
trend period, that would include some or all of the following 
decades: 1972–81, 1982–91, 1992–2001, and 2002–12). 
For example, for a sample collected on March 1, 1998, the 
85th percentile of all daily streamflows in March during the 
decade 1992–2001 was determined. If the streamflow on 
March 1, 1998, was greater than the 85th percentile of March 
streamflows during that decade, the sample was considered 
to be a high-flow sample. This assessment was completed 
by decade rather than once for the full trend period to ensure 
that samples at high streamflows were distributed throughout 
the trend period, rather than potentially being concentrated 
in one portion of it. It also allowed for the identification 
of high-flow samples collected during prolonged low-flow 
periods (for example, droughts). Such high-flow samples 
would have been collected during flows that were elevated 
relative to an unusually low baseline; the flows may not have 
been particularly high relative to overall average conditions 
at a site.

To ensure appropriate streamflow coverage, at least 14 
percent of the samples were required to be high-flow samples 
in at least half of the decades assessed during the trend period. 
In the other half of the decades, at least 10 percent of the 
samples were required to be high-flow samples. The relaxation 
of the 14-percent criterion to 10 percent in some decades 
was necessary to accommodate sites with changing sampling 
designs over time (for example, the collection of high-flow 
samples increased somewhat or decreased somewhat over 
time). For the shortest trend period (2002–12) of only one 
decade, at least 14 percent of the samples were required to be 
high-flow samples during that period. These thresholds were 
based on sensitivity testing described in the “Storm Sampling” 
section of this report. 

Data Used in Model Calibration

For site and parameter combinations that met the 
screening criteria, all available data before, during, and after 
the trend period (and if applicable, during any gaps) were 
retained to improve the model calibration (see the “Influence 
of New Data on Trend Estimates” section). Ultimately, model 
estimates only during the screened trend period were retained. 
In the case of longer records with data in two different decades 
separated by gaps, model estimates made in the years between 
the beginning and ending decades were excluded. Model input 
data are available in De Cicco and others (2017).

Multiple steps were used to determine the final trend 
model input values used in this study. Note that because 
of the recensoring of some USGS data, the summation of 
individual analytes for total parameters, the use of unrounded 
data from NWIS, and the use of interval censoring, the final 
USGS values used in this study will not always match the 
corresponding value stored in the NWIS database.

There were 584 sites evaluated for alkalinity and 
organic carbon trends with 795 combinations of sites and 
parameters. Table 5 summarizes the number of sites evaluated 
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for parameter and trend period. A complete list of sites and 
parameters evaluated for major ion and salinity trends is 
reported in appendix 1, table 1–6.

Pesticide Data Preparation and Parameters 
of Interest

Pesticides are fundamentally different than the other 
water-quality parameters included in this trend study. To 
accommodate these differences, a different trend method, 
SEAWAVE–Q, was selected for pesticides. Because of these 
differences, the pesticide data preparation and screening 
criteria differ from methods and criteria described for other 
water-quality parameters for a variety of reasons, some 
particular to the trend analysis method and others particular 
to the nature of pesticide concentrations in surface water. The 
generalized process for preparing and screening pesticide data 
is presented in figure 2B. 

Recent USGS pesticide trend studies for surface water 
(Sullivan and others, 2009; Ryberg and others, 2010, 2014) 
were based on published datasets (Martin, 2009; Martin and 
others, 2011) of 44 commonly used pesticides and 8 pesticide 
degradates (new compounds formed by transformation of a 
pesticide by chemical, photochemical, or biological reactions 
[Gilliom and others, 2006]). Pesticides in these datasets were 
analyzed at the NWQL using gas chromatography/mass 
spectrometry (GCMS; Zaugg and others, 1995; Lindley and 
others, 1996; Madsen and others, 2003) for water-quality 
samples after collection from January 1992 through September 
2010 at NAWQA and NASQAN sites. Concentrations were 
adjusted to compensate for bias resulting from temporal 
changes in recovery of the GCMS analytical method as 
determined using results from matrix spikes (Martin and 
others, 2009; Martin and Eberle, 2011). Martin and others 
(2011) stated, “Spikes are water samples where a known 
amount of pesticide is added to the water sample. Recovery 
is the measured concentration of the pesticide divided by the 
expected concentration and is expressed as a percentage. Both 
bias in recovery and variability of recovery are characteristics 
of method performance.” Two types of spikes were considered 
for the recovery analysis: (1) laboratory reagent spikes and 
(2) matrix spikes. Laboratory reagent spikes are quality 
control (QC) water samples in which a spike solution has 
been added to a sample of reagent-grade blank water and are 
primarily used to demonstrate that the sample preparation 
and analysis processes are in control (Martin and others, 
2009). Matrix spikes are QC water samples in which a spike 
solution has been added to an environmental water sample 
(usually in the field). While field and matrix spikes provide 
similar information on pesticide recovery, the matrix spikes 
are subject to the effects of pesticide degradation that might 
occur in the time period between sample collection and 
analysis (Martin and others, 2009). “Models of recovery based 
on matrix spikes are deemed more appropriate for adjusting 
concentrations of pesticides measured in groundwater and 

stream-water samples than models based on laboratory reagent 
spikes because (1) matrix spikes are expected to more closely 
match the matrix of environmental water samples than are 
reagent spikes and (2) method performance is often matrix 
dependent, as was shown by higher recovery in matrix spikes 
for most of the pesticides” (Martin and others, 2009).

Exploratory analysis for this trend study considered 
the inclusion of pesticide concentration data from additional 
sources, such as from USGS sites not designated as NAWQA 
or NASQAN but having concentrations determined by the 
GCMS method; from any USGS site and using any analytical 
method; and from outside agencies using a variety of methods. 
A major consideration for the expansion of pesticide trend 
analysis to additional methods, sites, and analyzing agencies 
is the potential need to correct for temporal changes in the 
pesticide recovery rate for laboratory analyses. Analytical 
recovery of pesticides in laboratory quality-control matrix-
spike samples and in stream-water matrices varies chemically 
and temporally (Bexfield, 2008; Martin and others, 2009; 
Martin and Eberle, 2011).

 Variable pesticide recovery rates can introduce artificial 
time trends in pesticide concentrations, even when time 
trends do not actually occur in the environment. The pesticide 
recovery rate in laboratory spikes is routinely measured 
by NWQL; however, pesticide concentrations reported by 
NWQL are not corrected for variable recovery rates (Martin 
and Eberle, 2011), and most environmental laboratories 
do not correct for recovery (Keith, 1991; J.D. Martin, U.S. 
Geological Survey, oral commun., 2014). Martin and others 
(2009) studied pesticide recovery using laboratory reagent 
spikes (5,132 reagent spikes for the time period September 
1993 through September 2005) and groundwater and stream-
water matrix spikes (2,097 matrix spikes; 49,749 estimates of 
pesticide recovery for the period May 1992 through August 
2006). In 2011, Martin and Eberle updated and supplemented 
that work with 4 years of additional data. They developed 
models of recovery, robust, locally weighted scatterplot 
smooths (lowess smooths) of matrix spikes, and found that 
the “magnitude of temporal change in modeled recovery in 
stream-water matrix spikes ranged from 10.6 percent for 
p,p’-DDE to 126.3 percent for carbaryl (table 2). The median 
amount of temporal change was 37.2 percent” (Martin and 
Eberle, 2011, p. 5). This indicates that reported concentrations 
are often biased high or low and that the bias changes over 
time.

Because of the importance of recovery adjustment for 
trend analysis and the lack of laboratory recovery data for 
non-NWQL laboratories, only NWQL data using the GCMS 
method were used in this trend analysis. This expanded the 
number of sites beyond the NASQAN and NAWQA sites used 
in previous pesticide trend reports. Parameters selected for 
inclusion in this trend analysis include the same 44 pesticides 
and 8 pesticide degradates used in past USGS pesticide trend 
studies (table 6). Table 6 groups the pesticides by use category 
(acaricide, herbicides, and insecticides); the parent pesticide is 
provided for degradates.
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Table 6.  Pesticides included in trend analysis.

[Sorted by use category, pesticide class, and U.S. Geological Survey (USGS) parameter code; CAS, Chemical Abstracts Service; --, not defined or not appli-
cable; DCPA, dimethyl tetrachloroterephthalate; EPTC, S-Ethyl dipropylthioarbamate; HCH, hexachlorocyclohexane; DDE, dichlorodiphenyldichloroethylene; 
DDT, dichlorodiphenyltrichloroethane]

Pesticide compound USGS parameter code CAS numbera Pesticide class Parent pesticide, if degradate
Acaricide

Propargite 82685 2312-35-8 Sulfite ester --
Herbicides

Propachlor 04024 1918-16-7 Acetanilide --
Metolachlor 39415 51218-45-2 Acetanilide --
Alachlor 46342 15972-60-8 Acetanilide --
Acetochlor 49260 34256-82-1 Acetanilide --
Propyzamide 82676 23950-58-5 Amide --
Propanil 82679 709-98-8 Amide --
Napropamide 82684 15299-99-7 Amide --
2,6-Diethylaniline 82660 579-66-8 Aniline Alachlor
Dacthal (DCPA) 82682 1861-32-1 Chlorobenzoic acid ester --
Trifluralin 82661 1582-09-8 Dinitroaniline --
Ethalfluralin 82663 55283-68-6 Dinitroaniline --
Benfluralin 82673 1861-40-1 Dinitroaniline --
Pendimethalin 82683 40487-42-1 Dinitroaniline --
Butylate 04028 2008-41-5 Thiocarbamate --
EPTC 82668 759-94-4 Thiocarbamate --
Pebulate 82669 1114-71-2 Thiocarbamate --
Molinate 82671 2212-67-1 Thiocarbamate --
Triallate 82678 2303-17-5 Thiocarbamate --
Thiobencarb 82681 28249-77-6 Thiocarbamate --
Simazine 04035 122-34-9 Triazine --
Prometon 04037 1610-18-0 Triazine --
Deethylatrazine 04040 6190-65-4 Triazine Atrazine
Cyanazine 04041 21725-46-2 Triazine --
Atrazine 39632 1912-24-9 Triazine --
Metribuzin 82630 21087-64-9 Triazine --
Terbacil 82665 5902-51-2 Uracil --
Linuron 82666 330-55-2 Urea --
Tebuthiuron 82670 34014-18-1 Urea --

Insecticides
Carbofuran 82674 1563-66-2 Carbamate --
Carbaryl 82680 63-25-2 Carbamate --
alpha-HCH 34253 319-84-6 Organochlorine gamma-HCH
p,p´-DDE 34653 72-55-9 Organochlorine DDT
gamma-HCH 39341 58-89-9 Organochlorine --
Dieldrin 39381 60-57-1 Organochlorine --
Fonofos 04095 944-22-9 Organothiophosphate --
Chlorpyrifos 38933 2921-88-2 Organothiophosphate --
Malathion 39532 121-75-5 Organothiophosphate --
Parathion 39542 56-38-2 Organothiophosphate --
Diazinon 39572 333-41-5 Organothiophosphate --
Phorate 82664 298-02-2 Organothiophosphate --
Parathion-methyl 82667 298-00-0 Organothiophosphate --
Ethoprophos 82672 13194-48-4 Organothiophosphate --
Terbufos 82675 13071-79-9 Organothiophosphate --
Disulfoton 82677 298-04-4 Organothiophosphate --
Azinphos-methyl 82686 86-50-0 Organothiophosphate --
Fipronil 62166 120068-37-3 Phenyl pyrazole --
Fipronil sulfide 62167 120067-83-6 Phenyl pyrazole Fipronil
Fipronil sulfone 62168 120068-36-2 Phenyl pyrazole Fipronil
Desulfinylfipronil amide 62169 -- Phenyl pyrazole Fipronil
Desulfinylfipronil 62170 -- Phenyl pyrazole Fipronil
cis-Permethrin 82687 54774-45-7 Pyrethroid --

aThis report contains CAS Registry Numbers®, which is a Registered Trademark of the American Chemical Society. CAS recommends the verification of the 
CASRNs through CAS Client ServicesSM.
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Pesticide Data Processing

Recensoring National Water Quality Laboratory Data 
and Preparation of Data for Trend Analysis

The principal steps in data preparation for trend 
analysis were to (1) adjust concentrations to compensate 
for bias resulting from temporal changes in recovery of the 
GCMS analytical method using the loess method presented 
in Martin and Eberle (2011), and (2) recensor routine 
nondetections by site and pesticide. The maximum LT–MDL 
(maxLT–MDL) was determined for each pesticide using 
historical LT–MDLs from the NWQL. 

The GCMS method provides low-level concentration 
estimates qualified with an “E” remark that are below the 
LT–MDL (Martin and others, 2011, p. 3–6). “Both pesticide 
concentration and sample matrix are expected to affect 
detection capability. Pesticide concentrations less than but 
close to maxLT–MDL likely are detected almost as readily 
as concentrations at or just above maxLT–MDL, whereas 
concentrations two orders of magnitude less than maxLT–
MDL might rarely be detected. As was true for analytical 
recovery (Martin and others, 2009, p. 10–12, figs. 2 and 
4), detection limits likely are a function of sample matrix. 
Concentrations readily detected in one matrix might not be 
detected in a more problematic matrix” (Ryberg and others, 
2010). For these reasons, a less conservative estimate of the 
detection limit was used for site-pesticide combinations with 
five or more detections below the maxLT–MDL. The routine 
nondetections and low-level detections were recensored to 
the median of the low-level detections that fell below the 
maxLT–MDL (qlow50; appendix 1 of the Ryberg and others 
[2010] report). For site-pesticide combinations with fewer 
than five low-level detections, low-level detections were 
recensored to the maxLT–MDL. Censored values with raised 
reporting limits (censored at a value larger than the maxLT–
MDL) were left in the dataset. Zero values were removed 
from the dataset. All pesticide concentrations are reported in 
micrograms per liter and are from filtered samples.

Pesticides collected for USGS sites 06934500 
Missouri River at Hermann, Missouri, and 07022000 
Mississippi River at Thebes, Illinois, between October 1, 
2001, and May 1, 2008, specified NWQL schedule 2010, 
where the extractions were done in the field (rather than 
in the laboratory as other schedules) and likely resulted 
in contamination; however, the contamination of atrazine 
and metolachlor is estimated, with 99 percent confidence, 
not to exceed 0.0093 and 0.0053 µg/L, respectively, in no 
more than 2 percent of all samples (Laura Medalie, U.S. 
Geological Survey, written commun., September 2016). 
Both of these sites have been used in past trend studies 
(Sullivan and others, 2009; Ryberg and others, 2014).

Degree of Censoring

Pesticide concentrations in rivers and streams are often 
below the detection level and the highly censored datasets 
present a challenge for statistical analysis (Sullivan and others, 
2009). The trend method SEAWAVE–Q (Vecchia and others, 
2008; Sullivan and others, 2009; Ryberg and Vecchia, 2013) 
was selected for pesticide data analysis because it is robust to 
high levels of censoring and incorporates a parametric survival 
regression model using maximum likelihood methods for 
censored data (R Development Core Team, 2014; Therneau, 
2014). As in previous studies (Ryberg and others, 2010; Ryberg 
and others, 2014), each site-pesticide combination was required 
to have at least 10 uncensored concentrations (detections at or 
above the censoring level) in each trend period (both the 10-year 
and 20-year trend periods).

Data Thinning

The presence of data points spaced closely together in 
time can introduce serial correlation into a time series. Serial 
correlation can increase the probability of incorrectly rejecting 
the null hypothesis of trend test, leading to an incorrect 
determination that a significant trend has occurred. To limit the 
influence of serial correlation in the trend tests, the data for a 
site and parameter combination were thinned to no more than 
one sample per week by retaining the sample collected closest to 
noon on Wednesdays. 

Final Screening for Data Coverage

Once the data processing steps had been completed, the 
resulting data series were screened for temporal coverage. All 
sites not meeting these criteria were excluded for trend analysis. 

Coverage Throughout Target Trend Periods

•	 The target trend periods were (1) 1992–2012 and (2) 
2002–12. Start and end years were allowed to vary by 
1 year. For example, a start year of 1992 or 1993 was 
acceptable in trend period 1, but 1994 was not. An 
end year of 2011 or 2012 was acceptable in both trend 
periods, but 2010 was not. 

•	 The start and end years of the series had to have three or 
more quarterly samples per year.

•	 For the 20-year trend period, 50 percent of the trend 
period needed to have at least three quarterly samples per 
year (10 years of three or more quarterly samples), and 
there could be no gaps longer than 5 years.

•	 For the 10-year trend period, 50 percent of years needed 
to have at least three quarterly samples per year (5 years 
of three or more quarterly samples), and there could be 
no gaps longer than 3 years.
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Coverage of Changing Seasons

To ensure seasonal coverage, 50 percent of years during 
a trend period were required to have at least three quarterly 
samples per year; the remaining 50 percent of years could be 
missing some quarterly samples. This allowed for reasonable 
changes in sampling design over time. The trend method 
SEAWAVE–Q is robust to gaps in the samples, provided 
the samples meet some criteria to be representative to the 
trend period. In the urban pesticide trends study (Ryberg 
and others, 2010, p. 7), at least 10 uncensored values were 
required and “the minimum sampling criteria for a particular 
site to be considered adequately representative of a particular 
9-year trend assessment period were (1) at least 2 years with 
four or more samples collected during the first 5 years of the 
assessment period and (2) at least 2 years with four or more 
samples collected during the last 5 years of the assessment 
period.” Examples are shown in figures 2–5 of the Ryberg and 
others (2010) report for sites with varying numbers of samples 
per year and with high degrees of censoring. In the pesticide 
trends study for major river basins of the United States, 
Ryberg and others (2014, p. 8) state “the minimum sampling 
criteria for a particular site to be considered adequately 
representative of a particular 10-year trend period were to have 
(1) at least 10 uncensored values after recensoring (calculating 
qlow50 when applicable and recensoring at that level), (2) at 
least 5 years of samples, (3) 6 or more samples in at least 2 
of the first 5 years of the period, and (4) 6 or more samples 
in at least 2 of the last 5 years of the period.” For additional 
information on minimum sampling criteria for determining 
pesticide trends, see Vecchia and others (2008), Sullivan and 
others (2009), and Ryberg and others (2010, 2014).

Coverage of Changing Streamflow

Pesticide concentrations in surface water have a strong 
seasonal signal depending on the time of application. There 
may be one or more general periods of application depending 
on the pesticide, some are postemergent applied in the spring, 
others may be preemergent applied in the spring and (or) 
fall, and other patterns of application may exist depending 
on the climate and crop. For example, in Vecchia and others 
(2008), figure 1 shows that seasonal variability in atrazine 
is not closely related to seasonal variability in streamflow. 
“Thus, the seasonal hydrologic cycle has little effect on 
atrazine concentration. Rather, seasonal change in application 
amounts is the major source of variability. The same generally 
holds for other pesticides and sites as well. This is in sharp 
contrast to other more naturally occurring or chemically 
stable water-quality parameters, such as dissolved major ions 
or nutrients, whose concentrations tend to be more directly 
related to streamflow” (Vecchia and others, 2008). The trend 
method SEAWAVE–Q specifically models the seasonality 
in application and a decay rate (depending on the properties 
of the chemical, concentrations decrease at varying rates 

after the peak application period). Because of these important 
characteristics of pesticide concentrations in surface water and 
the features of SEAWAVE–Q, pesticide sites do not require the 
same screening for high-flow samples that are needed for the 
parameters modeled using WRTDS.

Identification of a Colocated or Nearby Streamgage 

Continuous daily streamflow data were a required input 
to the trend model used in this study. Therefore, the presence 
of daily streamflow data during the full trend period was 
a requirement. Following methods described in an earlier 
section, a colocated or nearby streamgage was identified for 
each water-quality site to provide daily streamflow data at each 
site. Any site for which a suitable streamgage could not be 
found was excluded.

Merging Colocated or Neighboring Sites

Only USGS pesticide samples were used for this trend 
analysis. For this reason, there was no need to merge colocated 
or neighboring sites.

Zero and Missing Streamflows

On days when streamflow was reported as zero (that is, 
no streamflow was present in the stream), streamflow was 
set to the minimum recorded value for that particular stream 
(0.01 ft3/s in all cases). This was done because the trend model 
uses logarithmic transformations that are undefined for zero.

The trend method SEAWAVE–Q does not require 
streamflow on the day of sampling only but also requires long-
term streamflow monitoring (at least a year prior to the start 
of the trend period for the national trends study) in order to 
calculate and incorporate streamflow anomalies. Small gaps in 
the streamflow record can be estimated, but gages discontinued 
for 30 days or more during a trend analysis period cause 
issues, such as a gap in the model or disqualification of the 
site, depending on the length and timing of the gap. The trend 
method SEAWAVE–Q requires streamflow over the entire 
trend period, plus one additional year at the beginning of the 
period because 1-year, 30-day, and 1-day streamflow anomalies 
(Vecchia and others, 2008; Ryberg and Vecchia, 2012) were 
used in the model. Sites with sufficient pesticide concentration 
data were eliminated because of lack of streamflow at the 
beginning or end of the period of record or missing blocks 
of streamflow throughout the period. In one case, a site had a 
small number of missing streamflow values (10 missing values 
for site 12510500 Yakima River at Kiona, Washington, in the 
2001–12 streamflow period) and the fillMiss function of the R 
package waterData (Ryberg and Vecchia, 2012) was used to 
fill in the missing days using a structural time series model. In 
some cases, sites had incomplete streamflow data for 2001 and 
2012. These sites were retained in the analysis because their 
period of record varied little from the sites with a full period of 
record from 2001 to 2012.
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Data Used in Model Calibration
There were 70 sites evaluated for pesticide trends, with 

703 combinations of sites and parameters. Table 5 summarizes 
the number of sites evaluated for each time period for each 
parameter. A complete list of sites and parameters evaluated 
for pesticide trends is reported in appendix 1, table 1–6. Model 
input data are available in Ryberg and others (2017). 

Ecology Data Preparation

Ecology data are fundamentally different than the 
other water-quality and pesticide parameters included in this 
trend study. As a result, a different set of screening criteria 
and analysis techniques were used to evaluate trends in the 
ecology data. The generalized analysis collectively consisted 
of the Pearson correlation test (Harrell and others, 2016), 
linear regression (R Core Team, 2014), and the Kendall-tau 
test (Lorenz, 2016). The generalized process for preparing and 
screening ecology data is presented in figure 2C. 

Data and Trend Screening for Site and Sample 
Selection

Publically available fish, invertebrate, and algae data 
were screened to include only sites having greater than or 
equal to six annual samples of any assemblage collected 
between 1993 and 2012. This differed slightly from the water-
quality trend period from 1992 to 2012 because NAWQA 
Project ecology sampling did not begin until 1993. For 
comparing ecology trends to the other water-quality trends, 
the shortened time period allowed by the screening criteria of 
1993–2011 was considered equivalent to a 1992–2012 trend. 
All data were collected and processed by USGS personnel 
as part of the NAWQA Project (Gilliom and others, 1995) 
following established protocols (Cuffney and others, 1993; 
Meador and others, 1993; Porter and others, 1993; Fitzpatrick 
and others, 1998; Moulton and others, 2000; Charles and 
others, 2002; Moulton and others, 2002). Invertebrate and 
algae samples represented communities collected from 
richest-targeted habitats (Cuffney and others, 1993; Moulton 
and others, 2002). Fish samples consisted of combined 
electrofishing and seining efforts (Meador and others, 1993; 
Moulton and others, 2002). Sites were then screened to 
include only wadeable streams.

These preliminary criteria resulted in a starting dataset 
of 3,441 samples collected from 104 sites. Sites and samples 
were independently screened for each assemblage (fish, 
invertebrates, and algae). Only sites and samples meeting the 
following criteria were retained. 

•	 The target trend periods were 1993–2012 (hereafter 
referred to as “20-year trend period”) and 2002–12 
(hereafter referred to as “10-year trend period”). Only 
sites with samples collected within 1 year after the start 
year and (or) within 1 year before the end year were 

retained. For example, a start year of 1993 or 1994 was 
acceptable in the 20-year trend period, but 1995 was 
not. An end year of 2011 or 2012 was acceptable in 
either trend period, but 2010 was not. 

•	 Only sites with less than or equal to a 4-year 
continuous data gap were allowed. 

•	 Only sites with samples in at least 50 percent of years 
in each half of either trend period were retained. 

•	 Sites having available streamflow data 240 days before 
each ecology sample date or those where a nearby 
streamgage could be substituted or used to estimate 
values were retained (appendix 1, tables 1–3 through 
1–5). 

•	 In some instances, more than one sample was collected 
at a site during the same year. In such cases, samples 
collected at the primary reach (Fitzpatrick and others, 
1998) closest in time to the mean sampling day 
and month within the trend period were selected to 
represent that year. 

The above criteria resulted in various site/sample 
combinations for each assemblage and trend period (appendix 
1, table 1–6). For example, there were 47 fish, 49 invertebrate, 
and 35 diatom sites that passed the criteria to be included in 
the 2002–12 trend period; whereas only 4 fish, 9 invertebrate, 
and 3 diatom sites met the 1993–2012 trend period criteria 
(table 5). Note that soft algae were removed from the dataset, 
which preserved the remaining diatoms for analysis. The 
total number of samples over the 2002–12 trend period was 
1,096 (355 fish, 443 invertebrates, and 298 diatoms) and 208 
for 1993–2012 (122 fish, 47 invertebrate, and 39 diatoms). 
The number of samples per site ranged between 6 and 11 for 
2002–12 and between 11 and 15 for 1993–2012. 

Ecology Data Processing 

Taxonomic Harmonization and Resolving Ambiguous Taxa

Fish

The taxonomic target level for fish samples was species. 
In a few instances, species-level identifications could not be 
made in the field or laboratory. In these cases, identifications 
documented at either family (hybrids resulting from different 
genera) or genus (hybrids and [or] individuals that could not 
be identified to species with certainty) were removed from 
the final dataset, with the exception of genus level freshwater 
sculpin identifications (family Cottidae; genus Cottus). All 
freshwater sculpin identifications were reduced to the genus 
Cottus sp. because species level identification within this 
group is often problematic (Young and others, 2013).
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Invertebrates

Invertebrates were identified to the lowest practical 
taxonomic resolution in the laboratory, which was mostly 
genus or species (mollusks, crustaceans, and insects), but also 
included family, phylum, or class (aquatic worms, flatworms, 
and nematodes), depending on the group (Moulton and others, 
2000). Several steps were taken to prepare the invertebrate 
data for analysis. First, names were examined for cases where 
changes in taxonomic classification occurred during the 
20-year trend period. In such cases, names were harmonized 
to help alleviate any bias from changes in taxonomy. This is 
necessary because taxonomic revision either adds (through 
splitting of groups) or subtracts (through lumping of groups) 
the number of names associated with a particular group. 
For example, Wang and McCafferty (2004) used genetic 
information to revise the mayfly family Heptageniidae. As part 
of their revision, all but one species originally belonging to the 
genus Stenonema (S. femoratum) was placed into the genus 
Maccaffertium; therefore, all samples collected after 2004 
containing Stenonema and Maccaffertium were not comparable 
to those collected prior to 2004 when Maccaffertium 
was unrecognized. In this example, all Stenonema and 
Maccaffertium were given the name Stenonema because any 
Stenonema collected prior to 2004 other than identifiable S. 
femoratum could not be split into Maccaffertium without 
reexamining the specimens, which were no longer available. 
Similar issues occurred with other Heptageniidae genera (for 
example, Nixe, Leucrocuta, and Ecdyonurus) as well as with 
the mayfly families Baetidae (for example, Procloeon and 
Cloeon) and Leptohyphidae (for example, Tricorythodes and 
Leptohyphes). Second, species names were reduced to genus 
when possible, and their counts were summed by sample. 
Counts of larvae, pupae, and adults with the same name were 
also combined. Third, ambiguous taxa were resolved by 
keeping only those taxa (and counts) that were unique within 
each sample. This approach allows ambiguous taxa across 
the dataset, but preserves taxa richness within each sample. 
Preservation of taxa richness was desirable because most 
endpoints were based on richness (see “Ecological Endpoints” 
section for a description of endpoints). Exceptions were made 
to this approach for measures of ecological condition when it 
was necessary to harmonize taxonomy with the operational 
taxonomic units used in the development of models for the 
calculations. Fourth, raw data counts were standardized to 300 
for each sample by randomly resampling individuals without 
replacement until a count of 300 was reached. Raw count 
adjustments were necessary because laboratory subsampling 
procedures resulted in a wide range of individuals extracted 
from each sample, which differentially affected invertebrate 
taxa richness across samples (Vinson and Hawkins, 1996). 

Algae

Several steps were taken to prepare the algae data for 
analysis. First, all soft algae were removed from the dataset, 
which preserved the remaining diatoms for analysis. Second, 

the remaining diatom names were harmonized to ensure 
taxonomic consistency within each trend period and among 
sites. Finally, diatom cell counts were summed for each taxon 
within each sample. The target level for diatom identification 
was species, but some taxa were identified to lower taxonomic 
levels such as subspecies or variety. All taxa identified at the 
genus level were dropped before metrics were calculated. 

Ecological Endpoints 

Selected endpoints representing ecological integrity, 
community composition, tolerance, and similarity were 
calculated separately for each site to evaluate changes over 
time in fish, invertebrate, and diatom communities (table 7). 
In some cases, it was possible to calculate identical endpoints 
among assemblages (for example, taxa richness, Shannon-
Weaver diversity, and Bray Curtis similarity). In other cases, 
calculations were specific to each assemblage by necessity. 
For example, average community tolerances of each 
assemblage to specific stressors were calculated; however, 
the specific stressor may have been represented differently 
for diatoms when compared to fish and (or) invertebrates. 
Nationally derived indicators of ecological condition were not 
available for diatoms at the time of this publication so only 
fish and invertebrates are included. Examples of indicators 
commonly used to assess ecological condition include the ratio 
of observed (O) to expected (E) taxa (O/E) and multimetric 
type indices (MMI). Details of each endpoint by assemblage 
are described below. 

Fish Endpoints

Fish richness, diversity, Bray-Curtis similarity, and 
ecological condition, as well as tolerance to ammonia, 
chloride, specific conductance, dissolved oxygen, nitrate plus 
nitrite, pH, phosphorus, sulfate, suspended sediment, and 
water temperature were calculated for each sample (table 7): 

•	 FishRich is the total number of different fish species. 

•	 FishDiv is a measure of diversity that takes into 
account the number of different taxa and how evenly 
their counts are distributed within a sample (Shannon 
and Weaver, 1963). 

•	 FishLTsim is the Bray-Curtis Similarity (Bray and 
Curtis, 1957) value between each year and the start 
year in the trend period (year 1 with 2, year 1 with 3, 
year 1 with 4, year 1 with 5, and so on). This measure 
evaluates changes in community similarity relative 
to the start year. Individual species counts were 
fourth root transformed before Bray-Curtis Similarity 
values were calculated. Fourth root transformation 
downweights the contribution of highly abundant 
species while boosting the influence of those 
with midrange and lower abundances (Clarke and 
Warwick, 2001). 
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Table 7.  Ecology metric descriptions for fish, invertebrate, and diatom communities calculated for trend assessment. 

Code Metrics
Fish

Community composition
FishRich The total number of different fish species 
FishDiv Fish Shannon and Weaver diversity
FishLTsim Fish Bray-Curtis Similarity value between each year and the start year in the trend period

Condition indicator
FishOE Ratio of observed (O) fish taxa to the modeled number of expected (E) fish taxa (O/E) or multimetric index (MMI) value 

standardized to O/E units
Tolerance

FishAmm Average fish community tolerance to ammonia
FishCl Average fish community tolerance to chloride
FishSC Average fish community tolerance to specific conductance
FishDO Average fish community tolerance to dissolved oxygen
FishNitraNitri Average fish community tolerance to nitrite plus nitrate
FishpH Average fish community tolerance to pH
FishPhos Average fish community tolerance to phosphorus
FishSul Average fish community tolerance to sulfate 
FishSusSed Average fish community tolerance to suspended sediment
FishTemp Average fish community tolerance to water temperature

Invertebrates
Community composition

InvertRich The total number of different invertebrate taxa
InvertPerEPTr Percent invertebrate taxa richness comprised of individuals belonging to the orders Ephemeroptera (mayflies), Plecoptera 

(stoneflies), and Trichoptera (caddisflies)
InvertPnInr Percent of invertebrate taxa richness comprised of noninsect taxa. 
InvertDiv Invertebrate Shannon Weaver diversity
InvertLTsim Invertebrate Bray-Curtis Similarity value between each year and the start year in the trend period

Condition indicator
InvertOE Ratio of observed (O) invertebrate taxa to the modeled number of expected (E) invertebrate taxa (O/E)

Tolerance
InvertIon Average invertebrate community tolerance to major ions
InvertNutr Average invertebrate community tolerance to nutrients
InvertDO.Temp Average invertebrate community tolerance to dissolved oxygen and temperature
InvertSusSed Average invertebrate community tolerance to suspended sediment
InvertFines Average invertebrate community tolerance to fine sediment 

Diatoms
Community composition

DiaRich The total number of different diatom taxa
DiaDiv Diatom Shannon Weaver diversity
DiatomLTsim Diatom Bray-Curtis Similarity value between each year and the start year in the trend period

Tolerance
DiaSenBahlTol The number of diatom taxa sensitive to general nutrient and organic enrichment
DiaxHighCa The number of diatom taxa with a calcium optima of greater than 40 milligrams per liter
DiaLowCl The number of diatom taxa with a chloride optima less than 15 milligrams per liter
DiaLowO2 The number of diatom taxa that are known to tolerate down to 30 percent dissolved oxygen saturation
DiaHighO2 The number of diatom taxa that require nearly 100 percent dissolved oxygen saturation
DiaLowTN The number of diatom taxa having a total nitrogen optima of less than or equal to 0.2 milligrams per liter as nitrogen
DiaHighTN The number of diatom taxa having a total nitrogen optima of greater than or equal to 3 milligrams per liter as nitrogen
DiaLowTP The number of diatom taxa having a total phosphorus optima of less than or equal to 10 micrograms per liter as 

phosphorus
DiaHighTP The number of diatom taxa having a total phosphorus optima of more than or equal to 100 micrograms per liter as 

phosphorus
DiaHighMot The number of diatom taxa that are considered highly motile (mobile) distinguished by the presence of an extensive raphe 

and (or) are large in size

InvertDO.Temp
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•	 FishOE is a measure of ecological condition 
represented by the ratio of observed (O) taxa to the 
modeled number of expected (E) taxa (O/E) or as a 
multimetric index (MMI) value standardized to O/E 
units. In brief, O/E models compare the taxa observed 
in a sample to the taxa expected to be at a site in the 
absence of human disturbance. Predictions of E are 
based on multivariate relations between taxa and the 
environment derived from data collected at regional 
reference sites. Discriminant function analysis is used 
to select a subset of environmental predictor variables 
unrelated to human disturbance that best separates 
groups of reference sites previously determined by 
the dissimilarity in taxa occurrence among sites. 
Each taxon is assigned a probability of capture (PC) 
by calculating the frequency it occurs within each 
reference site group. The E is then calculated for a new 
site as the sum of PCs weighted by the probability that 
the site belongs to the reference group. The O is then 
calculated as the sum of each taxon predicted to be 
at the site that actually occurred at the site. See Moss 
and others (1987), Hawkins and Carlisle (2001), and 
Clarke and others (2003) for more details. In general, 
MMI models are built by selecting metrics that 
best discriminate between predefined reference and 
disturbed sites within a given basin, region, ecoregion, 
or other spatial stratification. Typically, the final set 
of metrics represents various aspects of community 
composition, richness, tolerance, abundance, function, 
as well as life history or other trait type characteristics. 
Once a final set of metrics are selected, values are 
scored on a continuous scale, summed, then rescaled 
to range between 0 and 100. See Karr and others 
(1986), Barbour and others (1999), and Hill and others 
(2000) for details and specific examples. Herein, both 
O/E and standardized MMI values were used out 
of necessity because previously developed models 
to calculate either value for all fish samples were 
unavailable at the time of this publication. The specific 
models used for fish included an O/E model previously 
developed for the Eastern United States (east of the 
100th meridian; Meador and Carlisle, 2009), and an 
MMI previously developed for the Western United 
States (west of the 100th meridian; Whittier and others, 
2007; Meador and others, 2008). All MMI values 
were standardized to common nondimensional O/E 
units (Hawkins, 2006) by dividing each value of each 
site by the mean of values for regional reference sites 
used to develop the MMI (Whittier and others, 2007). 
Rescaling is necessary to improve the comparability of 
MMI and O/E values (Hawkins, 2006). Hereafter, all 
standardized fish MMI values are identified as FishO/E 
and expressed in O/E units. The construction of O/E 
and MMI type models are detailed elsewhere (Karr 
and others, 1986; Moss and others, 1987; Barbour and 
others, 1999; Hawkins and Carlisle, 2001; Clarke and 

others, 2003). Models to calculate FishOE values were 
unavailable at the time of this publication for two sites 
(01170095 Green River at Stewartville, Massachusetts, 
and 01621050 Cahaba Valley Creek at Cross Creek 
Road at Pelham, Alabama; appendix 1, table 1–6).

•	 FishAmm, FishCl, FishSC, FishDO, FishNitraNitri, 
FishpH, FishPhos, FishSul, FishSusSed, and 
FishTemp are richness-based measures of community 
tolerance to ammonia, chloride, specific conductance, 
dissolved oxygen, nitrate plus nitrite, pH, phosphorus, 
sulfate, suspended sediment, and water temperature, 
respectively, based on the tolerance indicator values 
and methods detailed by Meador and Carlisle (2007). 

Invertebrate Endpoints

Invertebrate richness; percentage of mayfly, stonefly, and 
caddisfly richness (EPT); percentage of noninsect richness; 
diversity; Bray-Curtis similarity; and ecological condition; as 
well as tolerance to major ions, nutrients, dissolved oxygen 
and temperature, suspended sediment, and fine sediment were 
calculated for each invertebrate sample (table 7): 

•	 InvertRich is the sum of the number of different 
invertebrate taxa.

•	 InvertPerEPTr is the percentage of taxa richness 
comprised of individuals belonging to the orders 
Ephemeroptera (mayflies), Plecoptera (stoneflies), and 
Trichoptera (caddisflies). 

•	 InvertPnInr is the percentage of taxa richness 
comprised of noninsect taxa. 

•	 InvertDiv is a measure of diversity that takes into 
account the number of different taxa and how evenly 
their counts are distributed within a sample (Shannon 
and Weaver, 1963).

•	 InvertLTsim is the Bray-Curtis Similarity (Bray and 
Curtis, 1957) value between each year and the start 
year in the trend period (year 1 with 2, year 1 with 3, 
year 1 with 4, year 1 with 5, and so on). This measure 
evaluates changes relative to the start year. Invertebrate 
taxa counts were fourth root transformed before Bray-
Curtis Similarity values were calculated. Fourth root 
transformation downweights the contribution of highly 
abundant taxa while boosting the influence of those 
with midrange and lower abundances (Clarke and 
Warwick, 2001).

•	 InvertOE is a measure of ecological condition 
represented by the ratio of observed (O) taxa to the 
modeled number of expected (E) taxa (O/E). InvertOE 
values herein were calculated using previously 
developed models detailed in Carlisle and Meador 
(2007) and Carlisle and Hawkins (2008) and Yuan and 
others (2008). Models to calculate InvertOE values 
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were unavailable at the time of this publication for 
two sites (01209710 Norwalk River at Winnipauk, 
Connecticut, and 06713500 Cherry Creek near Denver, 
Colorado; table 1–6). See the previous section under 
FishOE for a brief description of how O/E values are 
derived. 

•	 InvertIon, InvertNutr, InvertDO.Temp, InvertSusSed, 
and InvertFines are richness-based measures of 
community tolerance to major ions, nutrients, 
dissolved oxygen and temperature, suspended 
sediment, and fine substrate based on the tolerance 
indicator values and methods described in Carlisle and 
others (2007).

Diatom Endpoints

Diatom richness; Shannon-Weaver diversity; and Bray-
Curtis similarity; as well as the number of taxa sensitive to 
general nutrient and organic enrichment; the number that 
prefer high calcium, low chloride, low oxygen, high oxygen, 
low total nitrogen, high total nitrogen, low total phosphorus, 
and high total phosphorus; and the number that are highly 
motile were calculated for each diatom sample (table 7). 
Measures of ecological condition such as MMI or O/E 
values were not calculated for diatom communities because 
previously developed comparable models were unavailable at 
the time of this publication. 

•	 DiaRich is the total number of different diatom taxa. 

•	 DiaDiv is a measure of diversity that takes into account 
the number of different taxa and how evenly their 
counts are distributed within a sample (Shannon and 
Weaver, 1963).

•	 DiatomLTsim is the Bray-Curtis Similarity (Bray and 
Curtis, 1957) value between each year and the start 
year in the trend period (year 1 with 2, year 1 with 3, 
year 1 with 4, year 1 with 5, and so on). This measure 
evaluates changes relative to the start year. Diatom 
taxa counts were fourth root transformed before Bray-
Curtis Similarity values were calculated. Fourth root 
transformation downweights the contribution of highly 
abundant taxa while boosting the influence of those 
with midrange and lower abundances (Clarke and 
Warwick, 2001).

•	 DiaSenBahlTol is the total number of diatom taxa 
sensitive to general nutrient and organic enrichment 
(Lowe, 1974; Lange-Bertalot, 1979; Bahls, 1993). 

•	 DiaxHighCl is the total number of diatom taxa with a 
calcium optima of greater than 40 mg/L (Potapova and 
Charles, 2003; Porter, 2008). 

•	 DiaLowCl is the total number of diatom taxa with 
a chloride optima less than 15 mg/L (Potapova and 
Charles, 2003; Porter, 2008). 

•	 DiaLowO2 is number of diatom taxa that are known 
to tolerate as low as 30 percent dissolved-oxygen 
saturation (van Dam and others, 1994; Porter, 2008). 
Values for this metric were not calculated at two 
sites (01170095 Green River at Stewartville, Mass., 
and 08195000 Frio River at Concan, Texas) because 
associated taxa were not present at these sites during 
several years. 

•	 DiaHighO2 is the number of diatom taxa that require 
nearly 100 percent dissolved-oxygen saturation (van 
Dam and others, 1994; Porter, 2008).

•	 DiaLowTN is the number of species having a total 
nitrogen optima less than 0.2 mg/L (National values 
in Potapova and Charles, 2007). Values for this 
metric were not calculated for one site (05420680 
Wapsipinicon River near Tripoli, Iowa) because 
associated taxa were not present during several years 
(table 1–6).

•	 DiaHighTN is the number of taxa having a total 
nitrogen optima greater than 3 mg/L (National values 
in Potapova and Charles, 2007; Porter, 2008). 

•	 DiaLowTP is the number of taxa having a total 
phosphorus optima less than or equal to 10 µg/L 
(National values in Potapova and Charles, 2007) (table 
1–6). Values for this metric were not calculated for 
one site (05420680 Wapsipinicon River near Tripoli, 
Iowa) because associated taxa were not present during 
several years.

•	 DiaHighTP is the number of taxa having a total 
phosphorus optima greater than or equal to 100 µg/L 
(National values in Potapova and Charles, 2007) (table 
1–6). Values for this metric were not calculated at two 
sites (01170095 Green River at Stewartville, Mass., 
and 08195000 Frio River at Concan, Tex.) because 
associated taxa were not present at these sites during 
several years.

•	 DiaHighMot is the number of taxa that are considered 
highly motile (mobile), as described by (Lowe, 1974) 
and (Spaulding and others, 2010). Values for this 
metric were not calculated for one site (01170095 
Green River at Stewartville, Mass.) because associated 
taxa were not present during several years (table 1–6).

Associated Environmental Variables

Selected hydrology metrics were calculated to help 
describe conditions antecedent to each sample date, as 
was the day of year that each sample was collected. These 
variables were used to help account for year-to-year variability 
in endpoint values because of differences in year-to-year 
conditions prior to sampling (table 8). Trend results for 

InvertDO.Temp
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Table 8.  Environmental variables used to account for variability 
in ecological endpoints as part of trend assessment.

Variable 
short name

Description

Avg15 Normalized average daily flow value of the 
15 days prior to sampling

Avg60 Normalized average daily flow value of the 
60 days prior to sampling

Avg240 Normalized average daily flow value of the 
240 days prior to sampling 

CV15 Normalized daily flow coefficient of variation 
of the 15 days prior to sampling

CV60 Normalized daily flow coefficient of variation 
of the 60 days prior to sampling

CV240 Normalized daily flow coefficient of variation 
of the 240 days prior to sampling

DOY The day of the year a sample was collected 
where day 1 is January first normalized by 
the site average DOY

ecology are presented for unadjusted endpoints and for 
endpoints adjusted by antecedent hydrology and the day of 
the year samples were collected. For each site, the day of 
the year (DOY) was determined by normalizing the DOY 
each sample was collected by the average DOY samples 
were collected over the trend period; DOY values less than 
1 indicate a sample was collected earlier rather than average 
in the index period, likewise values greater than 1 indicate 
sample collection was later than average.

Antecedent Hydrology

Average daily streamflow and the coefficient of 
variation of daily streamflow were calculated for 15, 60, 
and 240 days prior (antecedent) to each sample date. These 
selected antecedent periods were intended to capture 
site-specific conditions that may influence year-to-year 
differences in ecological endpoints. All values were 
normalized by the 10-year average for the same antecedent 
period for each metric and years from 2002 through 2012 (or 
the 20-year average for trends calculated for 1993–2012). 
For example, if the sample date was July 15, 2003, then 
the 15-day average daily streamflow (Avg15) for 15 days 
prior to the sample was calculated for July 1 through July 
15, 2003. This value was than normalized by the average 
of daily streamflow values from the July 1 through July 
15 of each year from 2002 to 2012. Some sites had an 
incomplete daily streamflow record within an antecedent 
or normalization period. In these cases, missing streamflow 
values were estimated using the Maintenance of Variance 

Extension type 1 (MOVE.1) method (Hirsch, 1982) and 
software developed by Granato (2009) (Streamflow Record 
Extension Facilitator; SREF version 1.0). The MOVE.1 
method, also known as the line of organic correlation (Helsel 
and Hirsh, 2002), is one of several techniques used for 
augmenting streamflow records when a common streamflow 
period is needed among many sites (Ries, 1994). The 
technique assumes a linear relation exists between flows at 
the site with missing values (short-term site) and a nearby 
index site (or set of index sites) that are similar in streamflow 
characteristics to the short-term site. The MOVE.1 equation 
estimates streamflow values at the short-term site: 

		  (15)

where
         and    		 are	 the mean of the concurrent streamflow, in 

cubic feet per second,
	 Sy and Sx 	 are	 the standard deviation of the log of the 

concurrent streamflow,
		  is	 the log of daily streamflow values at the 

index site, and
		  is	 the estimated daily streamflow value at the 

short-term site exponentiated back into 
original units.

•	 The streamflow record was augmented using the 
MOVE.1 method at a total of 10 sites (table 1–4). 
Additionally, streamflow from a nearby upstream or 
downstream streamgage was utilized at four sites by 
necessity because the ecology site was ungaged (table 
1–3). 

Day of the Year

It is often assumed that year-to-year variability in 
endpoint values is reduced by consistently sampling within 
the same index period (range of dates) each year (Cuffney 
and others, 1993; Moulton and others, 2002). Although this 
is a logical way to sample for trend studies, year-to-year 
conditions within the same index period vary widely. In a 
variance components study of NAWQA invertebrate data, 
Gurtz and others (2013) found timing of data collection within 
the index can explain more than 60 percent of variance in 
some endpoint values; therefore, the DOY (table 8) when each 
sample was collected was identified to help account for any 
influence of sample timing on endpoint variability in addition 
to the influence of antecedent streamflow conditions. The 
DOY was determined by normalizing the DOY each sample 
was collected by the average DOY for each site over the trend 
period; DOY endpoint values less than 1 indicate that a sample 
was collected earlier in the year than usual.

Y Y S S X Xi y x i= + ÷ −( )

Y Y S S X Xi y x i= + ÷ −( )Y Y S S X Xi y x i= + ÷ −( )

Y Y S S X Xi y x i= + ÷ −( )

Y Y S S X Xi y x i= + ÷ −( )
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Trend Analysis Methods

Three models were used to determine trends for this 
study. The WRTDS model was used to evaluate trends in 
major ion, salinity, nutrient, carbon, and sediment parameters. 
The trend method SEAWAVE–Q was used to determine trends 
in pesticide parameters. A combination of the Kendall-tau 
test, Pearson correlation test, and linear regression were used 
to evaluate trends in ecology. Descriptions for each trend 
analysis method are provided in this section.

Nutrient, Sediment, Major Ion, Salinity, and 
Carbon Trend Analysis Method 

The WRTDS model (Hirsch and others, 2010; Hirsch 
and De Cicco, 2015) was used to determine trends in 
concentration and load for nutrients, sediment, major 
ions, salinity, and carbon. The trends presented here are 
flow normalized (explained in the “Trends in Streamflow” 
section). The WRTDS package is part of two R packages: 
(1) Exploration and Graphics for RivEr Trends (EGRET) 
package, implementing methods to analyze long-term changes 
in water quality and streamflow (Hirsch and De Cicco, 2015), 
and (2) EGRETci package, implementing a set of approaches 
to the analysis of uncertainty associated with WRTDS trend 
analysis as implemented in the EGRET package (Hirsch and 
others, 2015).

The WRTDS model makes estimates of concentration 
for every day of the period of record at each site as

	 (16)

where
	 ln 	 is	 natural log,
	 c 	 is	 concentration, in milligrams per liter, 
	 βi 	 are	 fitted coefficients, 
	 Q 	 is	 daily mean streamflow, in cubic meters 

per second, 
	 t 	 is	 time, in decimal years, and 
	 ε 	 is	 the unexplained variation. 
Estimates of daily concentration are multiplied by the 
respective daily mean streamflow to estimate daily load. The 
WRTDS model differs from similar regression-based load and 
trend models in that the fitted coefficients are not the same 
throughout the entire domain of the data. Weighted regression 
is used to estimate a unique set of coefficients for every 
combination of Q and t in the period of record. The weights 
on each observation in the calibration dataset are based on 
the distance in time, streamflow, and season between the 
observation and the particular combination Q and t being used 
for the estimate. This process results in unbiased estimates 
of daily concentration and load. Because WRTDS estimates 
a unique set of coefficients for every combination of Q and 
t in the period of record, the relations among concentration, 
streamflow, and time are not fixed. It is possible for both the 

ln( ) ln( ) sin( ) cos( )c t Q t t= + + + + +β β β β π β π ε0 1 2 3 42 2

magnitude and the sign of the coefficients in equation 16 
to change, which allows for inflection points in the pattern 
of concentration and load to accommodate changes with 
streamflow and (or) time, which allows for the possibility of 
nonmonotonic trends over time.

Any given day in the period of record can be described 
by a unique combination of Q and t. For each day in the period 
of record, equation 16 is fit using locally weighted regression, 
resulting in a separate regression equation for each day. To 
save on computational effort, rather than doing a new estimate 
of the weighted regression equation for each day, a matrix of 
regression results is created and the estimate for any given day 
is determined using linear interpolation of the results stored in 
this matrix (Hirsch and others, 2010). For each day and model 
calibration, the weights on each observation in the dataset are 
based on a combination of three separate weights describing 
the similarity (or distance) of each data point to the given day 
relative to streamflow (log[Q]), time, and season of the year. 
For example, if equation 16 was being estimated for July 15, 
2000, from a dataset extending from water years 1992 through 
2012, data points in 2000 would be given a higher weight 
compared to data points in 2005. Similarly, because July 15 
is in the summer, data collected in June, July, and August 
would be given higher weights compared to data collected in 
December. Finally, if daily mean streamflow on July 15, 2000, 
was 500 ft3/s, then data points with streamflow around 500 
ft3/s would be given higher weights than streamflow around 
5,000 ft3/s. The user sets the windows used to determine 
these weights, and the three separate weights are multiplied 
to determine a single weight for each observation in the 
calibration dataset. The weights change for each model 
calibration.

Because the estimates of daily concentration and load 
are strongly influenced by random variations in streamflow, 
flow-normalized estimates of daily concentration and load 
also are computed in WRTDS. The flow-normalized estimates 
are designed to remove the variation in concentration or load 
because of random streamflow variations (but not the variation 
because of nonrandom seasonal streamflow variations); the 
effects of antecedent streamflow conditions are not removed. 
The temporal variation in streamflow is removed in WRTDS 
by assuming the streamflow that occurred on any given day 
of the record is one sample from the probability distribution 
of streamflows for that particular day of the year. To compute 
the flow-normalized estimate of concentration for a given 
date (for example, assume there are n years of record and the 
estimation is for the flow-normalized concentration for August 
10, 1999), WRTDS uses n separate weighted regressions to 
estimate concentration on that date with the streamflow value 
set to each one of the n historical streamflow values for that 
day of the year (in this example, every August 10 in the period 
of record). The flow-normalized concentration on that date 
(August 10, 1999, in this example) is then calculated as the 
mean of the estimated concentration values from each of those 
n weighted regressions. Similarly, each of the n estimated 
concentration values is multiplied by its corresponding 
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streamflow value to get n estimated load values; the mean 
of the n estimated loads is the flow-normalized load for that 
day. In this report, flow-normalized estimates are referred to 
as flow-normalized concentration or flow-normalized load; 
nonflow-normalized estimates are referred to as estimated 
concentration or estimated load. 

For many of the analyses herein, the daily estimates were 
summarized into water-year (October 1 through September 
30) annual means for estimated and flow-normalized 
concentration and water-year annual totals for estimated and 
flow-normalized load. Trends in annual mean concentration 
were calculated in three ways:

		  (17)

where
	 is	 the annual mean concentration, in year t1;
	 is	 the annual mean concentration, in year t2;

			 
		  (18)

and

		  (19)
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where
	 n 	 is	 the number of years in the time period, t2 – t1. 
Trends in total annual load were calculated in a similar 
manner. 

The confidence intervals and associated significance 
level of the trend are determined through a block bootstrap 
approach based on a time interval of 100 days to avoid 
oversampling any of the more densely sampled periods during 
the overall period of record and to broadly maintain samples 
from individual high or low streamflow events (Hirsch and 
others, 2015). The bootstrap method is used to generate a 
90-percent confidence interval on the magnitude of the trend 
(calculated using equations 17, 18, or 19) and a likelihood 
statistic that is the functional equivalent to the two-sided 
p-value. The likelihood statistic provides information on 
whether the null hypothesis that there is no trend over the 
period of record should be rejected and provides a measure of 
the strength of evidence that the trend is actually occurring. 
Trends in concentration are evaluated separately from the 
trends in load because the two trends may differ.

The confidence intervals and likelihood statistic were 
determined only for the flow-normalized values because they 
are more stable than the estimated values, which display a 
great deal of year-to-year streamflow-driven variation. This 
makes flow-normalized concentration and load ideal for 
evaluating progress toward nutrient reduction goals: however, 
for studies of ecological processes in the watershed or in 
receiving waterbodies such as Chesapeake Bay or the Gulf of 
Mexico, estimated concentration and load are more relevant. 

Future versions of WRTDS may extend the bootstrapping 
concept to estimated concentrations and loads, but for this 
report, only trends in flow-normalized concentration and load 
are reported for a specific site, parameter, and trend period. 
A trend result of “true” indicates that the two-sided p-value 
generated in the output file of EGRETci for the WRTDS 
model is less than the critical alpha value of 0.1.

There are several high-frequency datasets (daily or 
near-daily sampling) in the final set of trend sites for this 
study. High-frequency data are more likely to contain serial 
correlation—correlation of a time series with its own past and 
future values (for example, high concentrations are more likely 
to follow prior high concentrations and low concentrations 
are more likely to follow prior low concentrations). With 
traditional regression methods, serial correlation can result 
in error estimates that are smaller than the true error, which 
leads to a tendency to reject the null hypothesis of no trend 
(it will find a trend) when in fact there is no trend. The 
bootstrapping approach employed in this study does not have 
the same challenges, and the likelihood statistic will be largely 
unaffected by serial correlation. As a result, high frequency 
data were not thinned to less than one sample per day.

Early studies established conservative data criteria for 
use of the WRTDS model: water-quality data containing no 
more than 1 percent censoring, no longer than 4 years between 
consecutive water-quality samples, sample size greater than 
200, water-quality period of record longer than 20 years, 
and a complete record of daily streamflow for the entire 
water-quality period of record. Recent advancements in the 
WRTDS model have accommodated greater data censoring 
by employing survival regression (Hirsch and others, 2015), 
so data with as much as 50 percent censoring were used in 
this study (Hirsch and others, 2015). Data gaps of longer than 
4 years in the water-quality data are problematic because 
these periods lack relevant calibration information, and the 
estimates made during these times can be unreliable; therefore, 
these years were removed from the time series of estimated 
concentration and load by use of the blankTime function in 
WRTDS. In this study, the entire water-quality record also 
was used to calibrate the WRTDS model for a site, even 
if only part of the record passed the final data screens for 
trend analysis. Estimates made outside the screened trend 
periods, during periods when data were sparse, ultimately 
were removed using the blankTime function. Other recent 
studies have shown that WRTDS estimates may be reliable 
for data records with as few as 60 samples and a period of 
record as short as 10 years (Hirsch and De Cicco, 2015; 
Chanat and others, 2016). Sensitivity analyses conducted 
for this study (see the “Sampling Frequency” section) 
indicate reliable estimates are possible with sample sizes 
as small as 35, but only if the samples are well distributed 
throughout the year (at least one sample every quarter) and 
if the streamflow conditions captured in the water-quality 
dataset are comparable to the streamflow conditions across 
the period of record. Because the flow-normalization process 
required a complete record of daily flows, all sites were 



68    Water-Quality Trends in the Nation’s Rivers and Streams, 1972–2012—Data Preparation, Statistical Methods, and Trend Results

paired to a streamgage that had a complete record of daily 
streamflow during the assessed trend periods (see the “Gage 
Matching” section).

The R packages EGRET 2.2.0 and EGRETci 1.0.4 
were used for this study. The half-window widths used in 
this study were 7 years for time, 1 log cycle for streamflow 
at sites with drainage area greater than 250,000 km2, and 
2 log cycles for streamflow at sites with drainage area less 
than 250,000 km2, and 0.5 years for season. The minimum 
number of observations with nonzero weight required for each 
regression was set to 100 or to 75 percent of total observations 
(whichever was smaller), and the minimum number of 
uncensored observations required for each regression was 
set to one-half of the minimum number of observations. The 
edgeAdjust option was set to TRUE so that the window widths 
near the beginning and end of the record were extended to 
allow for more stable estimates during those periods. The 
variables bootBreak (the number of bootstrap iterations, 
which governs a stopping rule for the adaptive bootstrapping), 
blockLength (block length for bootstrapping, in days), and 
nBoot (number of bootstrap replicates) were all set to 100 
for the bootstrapping part of the modeling. A value setting 
of 100 is suggested in Hirsch and others (2015); a setting of 
100 will provide results that are much more reproducible and 
precise than a lower value setting. More information on these 
specifications in EGRET and EGRETci can be found in Hirsch 
and De Cicco (2015) and Hirsch and others (2015).

All WRTDS trend models were reviewed according to 
the procedures described in Hirsch and De Cicco (2015), 
with additional review steps described herein. Even though 
the WRTDS model is highly flexible, there is no assurance 
that it will provide reasonable estimates of concentration and 
load for all days in a record (Hirsch and De Cicco, 2015). 
Graphical tools were used to identify serious problems with 
the model fit as well as to identify suspicious patterns in the 
observed data that were not identified during the automated 
screening process. When serious problems were identified, 
the model results were rejected from the study. Serious 
problems included (1) severe outliers in the raw data that 
resulted in severe outliers in the residuals; (2) severe structure 
in the residuals when plotted against time, streamflow, or 
season; (3) severe structure in concentration residuals versus 
estimated concentration, indicating potential for biased or 
inaccurate concentration estimates; or (4) a poor relation 
between observed and estimated concentration or observed 
and estimated load. 

Three additional quantitative metrics were used in this 
study to identify extreme problems with the model fit and 
automatically reject models from the study. The first was an 
extrapolation metric indicating how much greater the highest 
estimated concentration was compared to the highest observed 
concentration:

extrapolation metric=(maximum estimated concentration)/
(2*maximum observed concentration)	 (20)

When this metric was greater than two (for example, when the 
highest estimated concentration was at least four times greater 
than the highest observed concentration), the model was 
rejected from the study. 

The second and third metrics were variations on a flux 
bias statistic that was created in response to a problem that 
several researchers previously identified with regression-based 
models like WRTDS (Hirsch and De Cicco, 2015). Flux bias 
is based on what is called load in this report. Hirsch and De 
Cicco (2015) define the flux bias statistic as a dimensionless 
representation of the difference between the sum of the 
estimated fluxes on all sampled days and the sum of the true 
fluxes on all sampled days. A value near zero indicates that the 
model is nearly unbiased. A positive value indicates a positive 
bias, and a negative value indicates a negative bias. Values that 
are between -0.1 and +0.1 indicate that the bias in estimates of 
the long-term mean flux is likely to be less than 10 percent. In 
this study, a truncated flux bias statistic also was calculated. 
The truncated flux bias statistic was calculated in the same 
manner as the regular flux bias statistic, but the calculation 
excluded the two largest absolute values of the residuals (in 
real space). This metric provided supplementary information 
on the nature of the model bias—it was used to evaluate 
whether the total model flux bias resulted from relatively small 
biases across all or most of the estimates or if it resulted from 
large biases represented by one or two large residual outliers. 
Models where the regular and truncated flux bias statistics 
exceeded +/- 0.4 (potentially indicating a model bias between 
25 and 100 percent across all or most of the estimates) were 
rejected from the study. Rejected models are noted in appendix 
1, table 1–6.

The Seasonal Kendall test (SKT) is a robust, 
nonparametric trend test that is widely used to test for trends 
in environmental parameters (Hirsch and Slack, 1984). 
Relative to WRTDS, SKT is a more conservative trend test 
that requires fewer assumptions about data quality; therefore, 
it was used to assess the overall distribution of trends in the 
dataset in comparison to WRTDS. All sites and parameters 
analyzed for trends using WRTDS were also analyzed for 
trends using the SKT.

Pesticide Trend Method

The seasonal wave (SEAWAVE–Q) model (Vecchia and 
others, 2008; Sullivan and others, 2009; Ryberg and others, 
2010, 2014; Ryberg and Vecchia, 2013) was selected as the 
statistical tool for analyzing trends in pesticide concentrations 
for this study. The SEAWAVE–Q model was specifically 
developed to address a “number of difficulties often found 
in pesticide data, such as strong seasonality in response 
to use patterns, high numbers of concentrations below 
laboratory reporting levels (LRLs), complex relations between 
streamflow and concentration, and intermittent or changing 
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sampling frequencies (both interannually and intraannually)” 
(Vecchia and others, 2008). 

The SEAWAVE–Q model is a parametric regression 
model specifically designed for analyzing seasonal- and flow-
related variability and trends in pesticide concentrations. The 
model is expressed as the following:

Log C(t) = β0 + β1 W(t) + β2 LTFA(t) 
	 + β3 MTFA(t) + β4 STFA(t) +β5 t + η(t)	 (21)

where
	 Log	 	 denotes the base-10 logarithm; 
	 C	 is	 pesticide concentration, in micrograms 

per liter; 
	 t	 is	 decimal time, in years, with respect to an 

arbitrary time origin;
	 β0, β1,…,	 are	 regression coefficients;
	 W 	 is	 a seasonal wave representing intraannual 

variability in concentration; 
	LTFA, MTFA,
	 and STFA	 are	 dimensionless long-term, mid-term, 

and short-term streamflow anomalies 
computed from daily streamflow 
(described later in this section); and

	 η(t)	 is	 the model error.
The seasonal wave is a dimensionless, periodic function 
of time with an annual cycle, similar to a mixture of sine 
and cosine functions often used to model seasonality in 
concentration data; however, the seasonal wave is better 
suited for modeling seasonal behavior of pesticide data than a 
mixture of sines and cosines. The seasonal wave is a periodic 
(with a period of 1 year) solution to the following differential 
equation (Vecchia and others, 2008):

		  (22)

where 
	  	 is	 the derivative with respect to time;

	 W	 is	 a seasonal wave representing intra-
annual variability in concentration; 

	 t	 is	 decimal time, in years, with respect to an 
arbitrary time origin;

	 λ(.)	 is	 a pulse input function with λ(.) greater 
than 0 during specified application 
season(s) and λ(.) equal to 0 otherwise;

	 s*	 is	 a seasonal shift that determines the time 
at which W reaches its maximum; and

	 ϕ	 is	 a “decay rate” corresponding to an 
approximate half-life of 12/ϕ months. 

 As in Sullivan and others (2009), the pulse input function is 
selected in seawaveQ from a menu of 14 (2 × 7) choices based 
on selecting either one or two distinct application seasons 
(when pesticides may be transported to the stream) with time 
lengths from 1 to 6 months. The half-life is selected from four 

d
dt
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d
dt
W t t s W t( ) ( *) ( )= + −λ ϕ

choices (1, 2, 3, or 4 months). The half-life is referred to as 
a model half-life when discussing model results in order to 
distinguish it from the chemical half-life of pesticides. Thus, 
56 (14 application seasons × 4 half-lives) choices for the 
seasonal wave function are available. As described in Sullivan 
and others (2009), the observed concentration data were used 
to select the best wave function for each model and to estimate 
the seasonal shift (s*) through a combination of graphical and 
maximum likelihood techniques.

Three dimensionless streamflow anomalies were included 
in the SEAWAVE–Q model to help account for flow-related 
variability in pesticide concentrations. The anomalies were 
computed using the R extension package waterData (Ryberg 
and Vecchia, 2012) and are based on log-transformed daily 
streamflow aggregated over various time scales. The first 
anomaly represented short-term (day-to-day) streamflow 
variability and was defined as

	 STFA(t) = X(t) - X30(t)	 (23)

where
	 STFA 	 is	 the short-term streamflow anomaly 

(dimensionless);
	 t 	 is	 decimal time, in years;
	 X(t) 	 is	 log-transformed daily flow, in cubic meters 

per second; and
	 X30(t) 	 is	 the average of log-transformed daily 

streamflow for 30 days up to and 
including time t. 

Large positive values of STFA and associated increases in 
pesticide concentrations tend to occur near the beginning 
of a substantial rainfall-runoff or snowmelt event, whereas 
negative values of STFA and associated decreases in pesticide 
concentrations tend to occur after the event passes (Vecchia 
and others, 2008). 

The second streamflow anomaly represents mid-term 
(30 to 365 day) streamflow variability and was defined as

	 MTFA(t) = X30(t) - X365(t)	 (24)

where
	 MTFA	 is	 the mid-term streamflow anomaly 

(dimensionless); 
	 t 	 is	 decimal time, in years; 
	 X30(t) 	 is	 the average of log-transformed daily 

streamflow for 30 days up to and 
including time t; and

	 X365(t) 	 is	 the average of log-transformed daily 
streamflow for 365 days up to and 
including time t.

The third streamflow anomaly added to the model 
represented long-term (greater than 365 days) streamflow 
variability and was defined as

	 LTFA(t) = X365(t) - X*	 (25)
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where
	 LTFA 	 is	 the long-term streamflow anomaly 

(dimensionless);
	 t 	 is	 decimal time, in years; 
	 X365(t) 	 is	 the average of log-transformed daily 

streamflow for 365 days up to and 
including time t; and

	 X* 	 is	 the average of log-transformed daily 
streamflow for the specified trend period 
(1992–2012 or 2002–12).

Unlike STFA, which tends to affect pesticide 
concentrations in a relatively consistent manner among 
different sites and pesticides, MTFA and LTFA can affect 
pesticide concentrations in different ways and to different 
degrees depending on the type of pesticide, the size of the 
basin, and the climatic and hydrologic properties of the basin. 
For example, for a relatively large basin with substantial 
nonurban or nonagricultural runoff, higher-than-normal annual 
streamflow conditions (as indicated by a positive value for 
LTFA) can cause decreased pesticide concentrations because 
of more dilution from runoff in areas where pesticides are 
not used (Sullivan and others, 2009); however, in a relatively 
small basin with primarily agricultural runoff, higher-than-
normal annual streamflow conditions can cause increased 
pesticide concentrations as wetter conditions lead to more 
shallow groundwater and overland runoff from areas with high 
pesticide application rates.

The SEAWAVE–Q model (equation 21) was fitted to 
the pesticide data using maximum likelihood methods for 
censored data (Sullivan and others, 2009) using the statistical 
software R (R Development Core Team, 2014) and the R 
extension package seawaveQ (Ryberg and Vecchia, 2013). 

Statistical significance of the model was determined 
using the t-test (Neter and others, 1996) of significance of the 
model coefficients (β0–β5, equation 21). A p-value greater than 
or equal to 0.10 for the trend coefficient (β5) indicated that the 
trend was not statistically significant. A p–value less than 0.10 
for β5 indicated a statistically significant upward or downward 
trend (also referred to as uptrend or downtrend). 

Unlike the concentration trends determined using 
WRTDS, which are expressed in terms of the flow-normalized 
annual mean concentration, the trend using the SEAWAVE–Q 
model is interpreted as a trend in the flow-adjusted 
annual median concentration. Also, unlike WRTDS, the 
SEAWAVE–Q trend in flow-normalized annual load cannot be 
different (computationally) from the trend in flow-normalized 
annual concentration when there is no trend in flow.

Daily pesticide concentration estimates provided by 
seawaveQ (Ryberg and Vecchia, 2013) are corrected for 
retransformation bias (the concentration model is built on 
the base-10 logarithm of concentration; therefore, a bias 
correction is required when transforming back to the original 
units) and then used to calculate daily loads. The bias 
correction used was

		
(26)e

scllog 10
2

2( )∗( )

where

	 e	 is	 the exponentiation function,
	 log(10) 	 is	 the natural logarithm of the number 10, 

and 
	 scl 	 is	 the scale parameter from the seawaveQ 

output (Ryberg and Vecchia, 2013). 
This correction, based on the quasi maximum likelihood 

estimator (Cohn and others, 1989) that was developed for 
natural logarithms, is adjusted for the SEAWAVE–Q model, 
which models the base-10 logarithm of the concentration. 
To calculate loads, the bias corrected concentration was 
multiplied by daily streamflow and a constant, 0.892998605, 
which converts the load units (micrograms per liter * cubic 
feet per second) to kilograms per year. Daily loads were 
summed to annual values.

Trends in concentration were calculated in two ways:

	   	 (27)

where
	 β5	 is	 the trend coefficient from equation 21,  
	 t1	 is	 the year at the start of the trend period, and
	 t2	 is	 the year at the end of the trend period.

		  (28)

where
		  is	 the median concentration from the trend 

line at the midpoint of year t1, and
		  is	 the median concentration from the trend 

line at the midpoint of year t2.
The confidence intervals on these two trend types are 

determined as follows:

		  (29)

where
	 α 	 is	 the significance level 0.10 for a two-sided 

90-percent confidence interval.,
	 se(β5)	 is	 the standard error for the trend coefficient 

β5, and
	 qnorm()	 is	 the          critical value for the standard 

normal distribution in R.
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Trends and confidence intervals for total load were calculated 
in a similar manner, where the load in years t1 and t2 were 
based on bias-corrected daily estimates of concentration from 
the model and daily streamflow.

A likelihood value that is the functional equivalent of the 
two-sided p-value associated with the significance level of the 
trend was determined as follows:

		  (31)

where
	 p-value	 is	 the p-value for the trend coefficient β5.

Ecology Trend Method 
Similar to water-quality data, there are environmental 

factors (for example, streamflow and climate conditions) that 
potentially influence ecological endpoints and may, therefore, 
confound trend results. To address this issue, at every site, two 
steps were taken to help select and account for confounding 
factors during trend analysis. First, the Pearson correlation 
analysis (Harrell and others, 2016) was used to identify the 
environmental variable (X, table 8) that had the strongest 
correlation (highest absolute r value, which measures the 
strength of the linear relation) with each ecological endpoint 
(Y, table 7). For each ecological endpoint, it was assumed 
that the most strongly correlated environmental variable had 
the highest potential to confound trend analysis. Second, the 
residuals were extracted from a simple linear regression model 
(R Core Team, 2014) of each X–Y pair, site, and trend period 
combination. The raw residuals represented the ecological 
endpoint after adjusting for the presumed confounding 
environmental variable. 

The Kendall-tau test for trends (Lorenz, 2016) was 
used to detect monotonic trends in the unadjusted ecological 
endpoints and in the residuals (adjusted ecological endpoints) 
at each site within each trend period. This nonparametric 
analysis has been widely used to detect monotonic trends in 
environmental data (Esterby, 1996). Trend results for both the 
adjusted and unadjusted data are reported, in percentage. 

		  (32)

where
	Sen Slope	 is	 the median of the slopes computed from 

the data pairs used in the computation of 
Kendall’s tau from the Kendall-tau test 
for trends (Lorenz, 2016), 

	 t1	 is	 the year at the start of the trend period, 
and

	 t2	 is	 the year at the end of the trend period, and
		  is	 the predicted median value, in year t1.

Additionally, a likelihood value calculated as the 
functional equivalent of a two-sided p-value associated with 
the significance level of the trend was determined as follows:

		  (33)

where
	 p-value	 is	 the p-value from the Kendall-tau test for 

trends (Lorenz, 2016).

Limitations on Trend Analysis and Effects on the 
Weighted Regressions on Time, Discharge, and 
Season (WRTDS) Model Estimates

Most studies that examine changes in water quality 
over time are challenged by common issues pertaining to 
data density, sample representativeness, and the stability of 
estimates as new data are added to the calibration record. A 
successful study of water-quality trends, one in which the 
identified trend holds up to scrutiny, requires researchers to 
make sound decisions to appropriately address and resolve the 
aforementioned issues and any others that arise because of the 
data or method used. This section will briefly discuss several 
broad issues facing water-quality trend studies and how 
these issues affect WRTDS model results. Specifically, this 
section presents several sensitivity tests to demonstrate how 
WRTDS estimates are affected by the frequency of sample 
collection throughout the year, the frequency of storm-sample 
collection, the precision (rounding) of water-quality data, 
and the incremental addition of new data to the calibration 
dataset. This discussion is not intended to be an exhaustive 
characterization of these issues or their effect on WRTDS 
results but provides examples of some issues faced in this 
study and other water-quality trend studies.

Storm Sampling
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Water-quality samples collected during high-flow periods 
are important for an unbiased WRTDS calibration but usually 
require extra effort because of the random nature of hydrologic 
events. The relation between concentration and streamflow 
is one of the primary relations modeled in WRTDS and is 
not always well defined when sites lack a sufficient number 
of high-flow samples. As a result, the model will extrapolate 
beyond the calibration conditions to make estimates of load 
and concentration at high flows that might be invalid and 
possibly result in inaccurate trend estimates. Additionally, sites 
lacking a sufficient number of high-flow samples are prone to 
overprediction and underprediction during high-flow periods, 
which affects annual estimates of mean concentration, load, 
and long-term trends.

The issue of sufficient high-flow coverage has been 
acknowledged in other investigations involving the estimation 
of concentrations, loads, and trends using streamflow-
concentration regression methods such as WRTDS (Preston 
and others, 1989; Chanat and others, 2016). Because the 
authors of this report are unaware of studies that have 
developed and applied consistent, objective criteria for the 
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determination of adequate representation of flows to a large 
number of sites, that effort was undertaken in this study. 
Experiments were conducted to determine the number of high-
flow samples that could be removed (by random subsampling) 
from the data record at a site before the estimates from 
WRTDS were substantially different from estimates using all 
data available for a site. Criteria were developed using (1) 
sites having a range of watershed areas and (2) multiple water-
quality parameters to evaluate differences in suspended and 
dissolved phase behavior.

Prior to running the WRTDS experiments, it was 
necessary to develop an operational definition of a high-flow 
sample. The term “high flow” is subjective because intersite 
and intrasite variation, as well as project-specific goals, 
confound a simple, universal definition of high flow. For the 
purposes of this study, high streamflow was defined as the 85th 
percentile of the decadal monthly flow. Decades were used 
in order to account for prolonged droughts or wet periods. 
The 85th percentile of the decadal monthly streamflow was 
determined as follows:
1.	 Divide the available streamflow record for each 

streamgage into decades corresponding to the trend 
periods used in this study: 1972–81, 1982–91, 1992–
2001, and 2002–12.

2.	 Extract all of the mean daily January streamflow values 
in a decade (January 1, 1972, January 2, 1972, * * * 
January 31, 1981) and calculate the 85th percentile (n= 
31 days × 10 years = 310 streamflow values).

3.	 Repeat step 2 for each month in a decade.

4.	 Repeat steps 2 and 3 for each decade.
As table 9 shows for two streamgages, the 85th percentile 

high-flow threshold value varies seasonally and in response 
to multiyear precipitation cycles. No single threshold of 
streamflow can be reasonably selected to identify high-flow 
samples. For the sites shown in table 9, a relatively low 
threshold value appropriate for summer high-flow events 
would lead to a characterization of all (or nearly all) winter 
samples as high flow; similarly, a relatively high threshold 
value that properly characterizes winter high-flow events 
would miss nearly every summer storm. Similar, but smaller, 
variations in high streamflow occur across decades for each 
month.

The 85th percentile of the decadal monthly streamflow 
was selected as an approach that worked well to establish 
the high-flow threshold value for a range of sites across the 
country. Decadal monthly streamflow percentiles ranging 
from the 75th to 95th were evaluated for use as the high-flow 
threshold. In general, lower percentiles were found to be 
suitable for larger streams, like the Delaware River at Trenton, 
New Jersey, that respond to storms over a longer duration 
and therefore spend relatively more time at higher flows (fig. 
3A). Higher percentiles were needed to characterize smaller, 
flashier streams, like Fanno Creek at Durham, Oregon, that 
spend relatively more time near their seasonal base-flow 

condition (fig. 3B). In the example 4 years shown in figures 
3A and 3B, the 85th percentile of decadal monthly streamflow 
spans a 6-fold range of streamflow values at Delaware River 
and spans more than a 35-fold range of streamflow values at 
Fanno Creek.

Figure 4 shows the distribution of total phosphorus 
samples at decadal monthly streamflow quantiles ranging 
from 75th to 95th percentiles for the same time interval at the 
same sites depicted in figure 3. The seasonal and multiyear 
differences reflected in figure 4 are typical of those observed 
at other sites that were examined. Note that at both sites, 
samples collected at the 75th percentile were collected at flows 
generally above the seasonal base streamflow but often fall 
short of storm peaks when concentrations of many parameters 
are near their maximum and are not high on the rising or 
falling limb of storms. Samples collected at the 85th percentile 
of flows capture more storm peaks and are more spread out 
over the 4-year span than those at the 95th percentile of flows.

Once the method to identify a high-flow sample was 
determined, experiments were undertaken with WRTDS to 
evaluate the sensitivity of the results to a reduction in the 
number of high-flow samples. The experimental data were 
generated by removing high-flow samples from nitrate and 
total phosphorus datasets at six water-quality sites. The 
six sites were: 01463500, Delaware River at Trenton, New 
Jersey; 01654000_22340331, Accotink Creek near Annandale, 
Virginia; 02338000, Chattahoochee River near Whitesburg, 
Georgia; 06805500, Platte River at Louisville, Nebraska; 
14211720, Willamette River at Portland, Oregon; and 
14206950, Fanno Creek at Durham, Oregon. Descriptions of 
these sites are in appendix 1, table 1–6. Nitrate was selected to 
evaluate the effect of high-flow samples on model estimates of 
water-quality parameters transported primarily in the dissolved 
phase, and total phosphorus was selected to evaluate the effect 
on model estimates of parameters having a large sediment-
bound fraction. The six sites were selected from sites that 
passed all water-quality and streamflow continuity screens (see 
the “Screening Streamflow Record for Streamflow Continuity” 
section) and were evaluated to ensure they had a relatively 
large percentage of high-flow samples (median = 15 percent 
high-flow samples among all sites and decades). Sites were 
selected to represent a range of watershed areas 
(62 to 221,107 km2). 

Using the selected sites, WRTDS models were run on 
the original nitrate and total phosphorus datasets and on 
downsampled versions of the datasets. The original datasets 
for each site were randomly downsampled to generate 
experimental datasets such that each trend decade (as defined 
previously in this section) contained 2, 6, 10, 14, 18, and 
22 percent high-flow samples. Trend decades at some sites 
originally contained fewer high-flow samples than were 
dictated by the specified downsampling percentage; in which 
case, the trend decade was not downsampled. An example of 
a downsampled dataset for site 14211720 Willamette River at 
Portland, Oregon, is shown in table 10.
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Table 9.  The 85th percentile of decadal monthly flow for site 01463500 Delaware River at Trenton, New Jersey, and site 14206950 Fanno Creek at Durham, Oregon. 

[Values reported in cubic feet per second]

Site 01463500 Delaware River at Trenton, New Jersey

Decade January February March April May June July August September October November December Range

1972–81 28,785 26,310 34,920 35,020 26,630 16,415 12,400 8,013 9,171 18,100 19,415 27,860 27,007

1982–91 13,930 21,655 23,100 32,560 27,400 17,300 10,800 7,360 6,765 10,165 15,015 20,160 25,795

1992–2001 19,730 17,980 28,665 39,260 18,895 14,645 9,117 7,405 6,296 9,063 16,345 22,225 32,965

2002–12 25,900 19,950 38,700 28,600 18,300 20,765 11,500 15,800 23,300 24,600 23,030 31,200 27,200

Range 14,855 8,330 15,600 10,660 9,100 6,120 3,283 8,440 17,005 15,537 8,015 11,040

Range as 
percent of 
mean

67 39 50 31 40 35 30 88 149 100 43 44

Site 14206950 Fanno Creek at Durham, Oregon

Decade January February March April May June July August September October November December Range

2002–12 196 101 119 77 53 25 9 6 9 34 117 214 208

Range 0 0 0 0 0 0 0 0 0 0 0 0

Range as 
percent of 
mean

0 0 0 0 0 0 0 0 0 0 0 0



74    Water-Quality Trends in the Nation’s Rivers and Streams, 1972–2012—Data Preparation, Statistical Methods, and Trend Results

Laf17-0792_fig03

Water year

Da
ily

 s
tre

am
flo

w
, i

n 
cu

bi
c 

m
et

er
s 

pe
r s

ec
on

d

2008 2009 2010 2011

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

75th Percentile
85th Percentile
95th Percentile

EXPLANATION

A. U.S. Geological Survey 01463500 Delaware River at Trenton, New Jersery
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Figure 3.  The 75th, 85th, and 95th decadal monthly streamflow percentiles for water years 2008–11 for sites A, 01463500 
Delaware River at Trenton, New Jersey; and B, 14206950 Fanno Creek at Durham, Oregon.
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Figure 4.  Collection points of total phosphorus samples exceeding the 75th, 85th, and 95th decadal monthly streamflow 
percentiles for water years 2008–11 for sites A, 01463500 Delaware River at Trenton, New Jersey; and 
B, 14206950 Fanno Creek at Durham, Oregon. 
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Table 10.  Number of nitrate samples at site 14211720 Willamette River at Portland, Oregon, in original and downsampled dataset. Data 
were downsampled such that the number of high-flow samples in each trend decade was approximately 10 percent of the total number 
of samples in that trend decade.

Trend  
decade

Number of  
samples in  

original dataset

Number of high-flow samples Percentage of high-flow samples

Original  
dataset

Downsampled  
dataset

Original  
dataset

Downsampled  
dataset

1972–81 82 14 8 17.1 10.5

1982–91 58 8 6 13.8 10.7

1992–2001 118 24 11 20.3 10.5

2002–12 178 24 18 13.5 10.5

Table 11.  Example of high-flow sample calculations and application of high-flow screening criteria for site 06818000 Missouri River at 
St. Joseph, Missouri.

[Y, yes; N, no; NA, not applicable]

Site Parameter
Percentage of high-flow samples High-flow criteria met?

1972–81 1982–91 1992–2001 2002–12 1972–2012 1982–2012 1992–2012 2002–12

06818000 Nitrate 17.5 10.6 13.6 15.9 Y N Y Y

06818000 Orthophosphate, 
filtered

NA 10.6 13.7 15.9 NA N Y Y

06818000 Total nitrogen NA 10.7 12.4 15.9 NA N Y Y

06818000 Total phosphorus 17.5 10.7 12.4 15.9 Y N Y Y
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In general, downsampling total phosphorus data 
resulted in lower estimates of concentration, flow-
normalized concentration, load, and flow-normalized load 
compared to estimates made with full datasets (fig. 5), while 
downsampling nitrate data resulted in higher estimates of 
concentration, flow-normalized concentration, load, and flow-
normalized load (fig. 6). Model estimates of concentration 
and load in the downsampled data were generally within 10 
percent of the respective model estimates using the original 
dataset when the downsample high-flow percentage was 10 
percent or more, and nearly identical when the downsample 
high-flow percentage was 14 percent or more. When the 
percentage of high-flow samples was reduced to 6 percent or 
even more so, to 2 percent, model estimates were dramatically 
different from estimates using the original dataset containing 
all high-flow samples (fig. 7). 

The criteria for the minimum number of high-flow 
samples were determined after evaluating the downsampling 
results. It was decided that sites would be required to have 
at least 10 percent high-flow samples in all trend decades to 
be modeled and at least 14 percent high-flow samples in half 
of the trend decades to be modeled. In the screening logic 
example shown in table 11, nitrate data from 1972 to 2012 are 
suitable for trend analysis because (1) all trend decades have 
at least 10 percent high-flow samples and (2) half of all trend 
decades with sufficient data have at least 14 percent high-flow 
samples. Nitrate data from 1982 to 2012 are not suitable for 
trend analysis because half the trend decades do not have at 
least 14 percent high-flow samples.

Sampling Frequency

The original guidance for WRTDS recommended its 
use at sites with long-term (at least 20 years) and dense (at 
least 200 samples) water-quality datasets and with continuous 
daily streamflow for the entire water-quality period of record 
(Hirsch and others, 2010). Refinements to WRTDS and more 
recent experience with the method have indicated that a 
reasonable trend estimation can be achieved for datasets as 
short as 10 years and as few as 60 samples (Hirsch and De 
Cicco, 2015; Chanat and others, 2016). Many agencies collect 
just four samples per year in their monitoring programs. 
To maximize the use of such multiagency data, this study 
required a sampling frequency of at least four samples per 
year for the first 2 years and the last 2 years of the trend 
period, as well as at least four samples per year in 70 percent 
of the years in the trend period (See “Final Screening for Data 
Coverage” section for more detail). Although only 28 samples 
were required to pass the initial WRTDS trend screening, 
the minimum number of samples used in any WRTDS trend 
model in this study was 35. To explore the effect of sample 
frequency on WRTDS estimates and the use of data that were 
collected less frequently than is typically recommended for 
the model, a sensitivity test was completed at two sites using 
water-quality data for nitrate and total phosphorus.

Water-quality records from two sites having greater than 
1,000 observations (approximately 25 samples per year) and 
a maximum trend period of 1972–2012 or 1982–2012 were 
downsampled to explore the influence of sample frequency 
on WRTDS estimates. At each site, all available data were 
used to calibrate WRTDS, and then each complete dataset was 
downsampled iteratively, without replacement, to 12, 9, 6, 
4, and 2 samples per year. Downsampled datasets were then 
used to calibrate WRTDS, estimate annual concentrations and 
loads, and calculate trends in flow-normalized concentration 
and flow-normalized load for each of the trend periods used 
in this study (that is 1972–2012, 1982–2012, 1992–2012, 
and 2002–12). Each iteration of downsampling began with 
the previously downsampled dataset. Downsampling was 
accomplished by dividing the water-quality record into a 
predefined number of seasons corresponding to the desired 
number of samples per year and then randomly selecting 
without replacement one water-quality sample from each 
season. The downsampling routine did not specifically 
consider the proportion of samples collected during high 
flows, though the complete datasets had been previously 
screened using high-flow criteria from this study. Therefore, 
the downsampled datasets may have fewer high-flow samples 
than is ideal. The results of this downsampling exercise 
reflect a combination of the effects of having overall fewer 
samples and a loss of seasonal and high-flow resolution in the 
WRTDS model.

Figure 8 shows the time series of annual flow-normalized 
concentration and flow-normalized load estimates from 
models calibrated using the complete dataset and using all 
downsampled datasets for nitrate and total phosphorus at sites 
mdWIL0013 and iaDMRWQN 6 (appendix 1, table 1–6). 
These results hereafter are referred to as all-data, ds-12, ds-9, 
ds-6, ds-4, and ds-2 estimates or downsampled estimates. 
For both sites and parameters, the overall shape of the time 
series of all-data estimates typically shows more inflection 
points and undulations over time compared to the time series 
of downsampled estimates. In most cases, the time series 
of ds-12 estimates roughly match the variations shown in 
the time series of all-data estimates (fig. 8). The overall 
agreement between the time series appears to diminish as the 
calibration data are downsampled more intensely. For some 
site-parameter combinations, the most variability between 
the various downsampled estimates occurs at the beginning 
or end of the maximum trend period. For example, at site 
mdWIL0013 near the beginning of the record, downsampled 
estimates of annual flow-normalized nitrate load range 
from being nearly the same as the all-data estimate to over 
100,000 kilograms per year (kg/yr) higher (for ds-4), whereas 
estimates later in the record vary by about half this range or 
less (fig. 8C). However, for other site-parameter combinations, 
large differences between the all-data and downsampled 
flow-normalized estimates occur throughout the record. For 
example, at mdWIL0013, total phosphorus load varies by 
about 20,000 kg/yr between downsampled estimates across 
most of the record (fig. 8G).
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Figure 5.  Annual concentration, load, flow-normalized concentration, and flow-normalized load of total phosphorus at site 
14211720 Willamette River at Portland, Oregon, showing the original data and data that has been downsampled to contain 2, 6, 10, 
14, 18, and 22 percent high-flow samples per trend decade.
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Figure 5.—Continued  Annual concentration, load, flow-normalized concentration, and flow-normalized load of total phosphorus 
at site 14211720 Willamette River at Portland, Oregon, showing the original data and data that has been downsampled to contain 2, 
6, 10, 14, 18, and 22 percent high-flow samples per trend decade.
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Figure 6.  Annual concentration, load, flow-normalized concentration, and flow-normalized load of nitrate at site 
06805500 Platte River near Louisville, Nebraska, showing the original data and data that has been downsampled to contain 
2, 6, 10, 14, 18, and 22 percent high-flow samples per trend decade.
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Figure 6.—Continued  Annual concentration, load, flow-normalized concentration, and flow-normalized load of 
nitrate at site 06805500 Platte River near Louisville, Nebraska, showing the original data and data that has been 
downsampled to contain 2, 6, 10, 14, 18, and 22 percent high-flow samples per trend decade.
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Figure 7.  Annual concentration, flow-normalized concentration, load, and flow-normalized load of total phosphorus 
at site 01654000 Accotink Creek near Annandale, Virginia, showing the original data and data that has been 
downsampled to contain 2, 6, 10, 14, 18, and 22 percent high-flow samples per trend decade.
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Figure 7.—Continued  Annual concentration, flow-normalized concentration, load, and flow-normalized load of total 
phosphorus at site 01654000 Accotink Creek near Annandale, Virginia, showing the original data and data that has been 
downsampled to contain 2, 6, 10, 14, 18, and 22 percent high-flow samples per trend decade.
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(FN-conc and FN-load) from models calibrated using the complete dataset (“All-data”) and each downsampled (ds) dataset 
containing 12, 9, 6, 4, or 2 samples per year for sites iaDMRWQN 6 and mdWIL0013. 
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An important consideration for this study was to determine 
how trend estimates varied with different sample frequencies 
in the calibration datasets. To explore this, trends determined 
using the downsampled estimates were compared to trends 
determined using all-data estimates. Trends, described as 
the amount or percentage change in annual flow-normalized 
concentration or flow-normalized load between any 2 years, 
were calculated for the endpoints of all possible trend periods 
used in this study for these two parameters and two sites. Errors 
in the downsampled trends are shown in figure 9 for each site 
and parameter by trend period and estimate type (concentration 
or load). Errors were determined by calculating the percentage 
difference in the downsampled trend compared to the all-data 
trend (shown on the y-axis with a horizontal line at zero for 
reference). Errors were larger for downsampled load trends 
compared to downsampled concentration trends across all trend 
periods, sites, and parameters. Also, total phosphorus trends 
at site mdWIL0013 were prone to greater errors across most 
sampling frequencies compared to site iaDMRWQN 6 and to 
nitrate. These greater errors may be due to the much larger 
percentage of censored data at this site. About 30 percent of 
the total phosphorus concentrations were censored for site 
mdWIL0013, whereas less than 1 percent of the values were 
censored for the other sites and parameters. 

Figure 9 shows that many downsampled trends are within 
+/- 10 percent (dashed horizontal lines) of the all-data trend. 
Generally increasing errors with decreasing sample frequency 
is evident in the 2002–12 downsampled trends for both sites. 
Across the other trend periods, errors become increasingly 
or decreasingly large as sample frequency decreases (as 
opposed to remaining relatively constant), but this pattern is 
not necessarily monotonic. Importantly, the ds-2 trends do not 
always have the most error. Depending on the site, parameter, 
and trend period, the ds-4, ds-6, and ds-9 trends can have 
more error than the ds-2 trend. When the most accurate and 
least accurate downsampled trends were selected for each 
combination of site, parameter, estimate type (concentration or 
load), and trend period (28 trend scenarios total), as expected, 
the ds-12 trends were consistently the most accurate (table 12). 
Out of 28 trend scenarios, over half were best estimated with 
the ds-12 trend. The ds-2 trend was least accurate in more than 
40 percent of the trend scenarios, consistently exhibiting greater 
error compared to the other downsampled trend estimates.

Table 12.  Comparison of accuracy in trend estimates between 
downsampled datasets, across all 28 scenarios.

Sample 
frequency

Number of times  
downsampled trend  
was most accurate

Number of times  
downsampled trend  
was least accurate

ds-2 4 12

ds-4 2 7

ds-6 4 4

ds-9 3 3

ds-12 15 2

In addition to trend magnitude, the direction of the 
trend is an important component of trend analysis; thus, 
the direction of each downsampled trend was compared to 
the direction of the corresponding all-data trend. For this 
comparison, the 80 or 60 individual downsampled trends 
for each site were considered; this includes downsampled 
trends for 2 parameters, 2 estimate types (concentration or 
load), 5 different downsampled datasets (2, 4, 6, 9, and 12 
samples), and 3 or 4 trend periods, depending on the site. 
For site iaDMRWQN 6, when these 80 downsampled trends 
were compared to their corresponding all-data trend, only 
2 downsampled concentration trends and 2 downsampled 
load trends differed in trend direction. Specially, at site 
iaDMRWQN 6, the ds-2 and ds-4 nitrate concentration and 
load trends for 1972–2012 were positive when the all-data 
trend for this period was negative (fig. 8B and 8D, compare 
ending position of pink, blue, and red lines with their 
beginning position). For site mdWIL0013, the majority of the 
60 downsampled concentration or load trends also had the 
same direction as the corresponding all-data trend, though 
8 downsampled trends differed in direction. These eight 
conflicting downsampled trends all occur for total phosphorus 
concentration or load, mainly during the later two trend 
periods. Specifically, for the 2002–12 trend period, the ds-2, 
ds-4, and ds-6 trends for total phosphorus concentration were 
negative when the all-data concentration trend was slightly 
positive (fig. 8E), and the ds-9 and ds-12 trends for total 
phosphorus load were positive when the all-data load trend 
was slightly negative (fig. 8G). Also, the 1992–2012 trend 
period for the same site and consistuent had positive ds-4, 
ds-6, and ds-9 load trends when the all-data load trend was 
negative (fig. 8G). Note however, that the 1992–2012 trend 
is not reported for this site and parameter in the results of this 
study because the data failed to meet the data screens for this 
period. In total, about 8 percent of the downsampled trends 
had a different direction than the corresponding all-data trend, 
the majority of which occurred for total phosphorus trends at 
the highly censored mdWIL0013 site (accounting for 6 percent 
of all cases). For these two sites and parameters, the directions 
of the downsampled trends were generally consistent with the 
all-data trend, and this appears to be quite consistent across 
sample frequency. Differences in the trend direction also 
appear to be most sensitive for datasets that have considerable 
censoring. Bootstrap analysis was not performed for these 
downsampled trends, so it is possible that some or all of the 
eight conflicting downsampled trends were not significant. 

While the errors associated with downsampled trends 
can be large, at times much greater than 10 percent depending 
on the site and parameter (fig. 9), the directions of the 
downsampled trends appear to typically agree with the 
direction of the all-data trend. This indicates that the decision 
to allow a minimum of four samples per year for 70 percent 
of the record (though four samples per year for the first 2 and 
last 2 years in the record will be required) may lead to trend 
estimates with some amount of unknown error in magnitude, 
but the estimates are likely to be correct in direction. Also, 
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Figure 9.  Percentage errors in flow-normalized concentration (FN-conc) and flow-normalized load (FN-load) trends by 
sampling frequency, site, and parameter.
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the ds-2 trends exhibited the most error (table 12) across the 
various trend periods, indicating that the decision to limit 
the sample frequency to a minimum of four samples per year 
will help to avoid more consistent error associated with lower 
sample frequencies. This sensitivity analysis only explored the 
influence of sample frequency on WRTDS trend estimates at 
two sites for two parameters, thus making it impossible to draw 
a firm conclusion on overall errors anticipated from different 
sample frequencies. To more fully explore the influence of 
sample frequency on trend estimates and to develop a better 
characterization of the anticipated errors, a more robust analysis 
involving the use of a large number of densely sampled sites or 
simulated data is required. 

To ensure the representativeness of the calibration datasets, 
this study required that the four samples per year roughly occur 
in each of the four seasons of the year (see “Data Processing” 
sections), and that a certain number of samples were collected 
at or above a high-flow threshold (see “Storm Sampling” 
section). These additional data requirements help to ensure 
that the calibration dataset for each site captures the range of 
seasonal and hydrologic variability that occurs; furthermore, 
additional evaluations were completed during the review of 
the WRTDS model residuals as described in the “Nutrient, 
Sediment, Major Ion, Salinity, and Carbon Trend Analysis 
Method” section, which included visually assessing the data 
for seasonal coverage and comparing the range of streamflow 
conditions captured by the calibration dataset to the range of 
streamflow conditions across the entire period of record. 

Rounding of Water-Quality Data 
The precision of the water-quality data used in this study 

varied by site, parameter, and analyzing agency because 
of the analytical methods used for sample determination, 
laboratory-specific detection limits, and reporting conventions. 
Additionally, the precision of a specific parameter, at a single 
site, analyzed by a single agency may vary over time because 
of upgrades in analytical equipment, updates to detection limits, 
and changes in reporting conventions over time. 

To illustrate the influence of rounding on WRTDS 
estimates, sensitivity tests that applied various types of 
rounding were completed at two sites. At site 14211720 
Willamette River at Portland, Oregon, total phosphorus data, 
which were originally reported to a precision greater than 0.001 
(fig. 10A), were rounded to 3, 2, and 1 decimal place (figs. 
10B, 10C, and 10D); each of these rounded datasets and the 
unrounded dataset were used to calibrate WRTDS. The annual 
flow-normalized concentration and flow-normalized load 
estimates derived from datasets rounded to 3 and 2 decimal 
places are indistinguishable from the estimates derived from the 
unrounded dataset (figs. 10E and 10F). The estimates derived 
from the dataset rounded to only 1 decimal place are biased by 
about 0.025 mg/L for flow-normalized concentration estimates 
and 50,000 kg/yr for flow-normalized load estimates compared 
with estimates derived using the unrounded dataset (figs. 10E 
and 10F). 

As a second example, filtered orthophosphate data at 
site 06805500 Platte River at Louisville, Nebraska, originally 
contained different rounding precisions for different parts 
of the record. For example, from water year 1982 through 
mid-1996, data were reported to 2 decimal places, and from 
mid-1996 though the end of the record, data were reported to 
3 decimal places, except for half of the year in 2007, when 
data were reported to 5 decimal places. The WRTDS estimates 
were determined using the original data at this site, and the 
results were compared to three scenarios: (1) all data rounded 
to 2 decimal places, (2) data for 1982–96 rounded to 2 decimal 
places and data for 1997–2012 rounded to 3 decimal places, 
and (3) data for 1982–90 rounded to 1 decimal place, data for 
1991–2000 rounded to 2 decimal places, and data for 2001–12 
rounded to 3 decimal places, simulating upgrades to analytical 
equipment with increased precision (figs. 11A, 11B, 11C, and 
11D). The flow-normalized concentration and flow-normalized 
load estimates from these three scenarios are nearly identical 
when compared to the flow-normalized estimates derived 
from the unrounded data (figs. 11E and 11F). There are small 
departures in the estimates derived from the rounded datasets, 
but the overall shape of the time series remains consistent. 
Based on the results from these two sites, when rounding 
appears to minimally affect WRTDS estimates, no attempt was 
made to change the precision of the original data.

Influence of New Data on Trend Estimates
The WRTDS model and all regression-based water-

quality models are sensitive to the incremental incorporation 
of new data. Estimates of concentration and load are typically 
updated periodically (for example, annually or semidecadally) 
as new water-quality data become available. Recalibration of 
regression-based models with updated data can lead to changes 
in the model coefficients, historical estimates, and model 
diagnostics. With each addition of new data and successive 
recalibration of the model, previous estimates of concentration 
and load for the same year can change, affecting the trend 
estimated between two past points in time. For example, total 
nitrogen data from 1995 through 2005 can be used to calibrate 
WRTDS, estimate annual concentrations for each year in the 
record, and calculate a trend between these start and end years 
using the annual estimates. When new data are added in 2006 
and the model is recalibrated, annual total nitrogen estimates 
are available through 2006. Because additional calibration 
data have been used in the regression model, the total nitrogen 
estimates for 1995 and 2005 may have changed to some 
extent, possibly causing the 1995–2005 trend to also change. 
Changes in estimates between successive model calibrations are 
particularly evident during the last few years of the calibration 
period when the influence of new observations is greatest 
because the time weight is greatest; thus, these changes to 
historical estimates as new data are added to the calibration 
dataset are referred to as “edge effects” in this study. Estimates 
in the last few years of the calibration period are more 
vulnerable to edge effects because of the window-weighting 
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Figure 10.  Total phosphorus data at site 14211720 Willamette River at Portland, Oregon, A, unrounded (None); and three 
rounding schemes including, B, all data rounded to 3 decimal places (R 0.001); C, all data rounded to 2 decimal places (R 0.01); D, 
all data rounded to 1 decimal place (R 0.1); plus E, annual flow-normalized concentration; and F, flow-normalized load estimates 
from WRTDS when using the unrounded and variously rounded datasets.
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Figure 11.  Filtered orthophosphate data at site 06805500 Platte River at Louisville, Nebraska, A, unrounded (None); B, all data 
rounded to 2 decimal places (R0.01); C, data for 1982–96 rounded to 2 decimal places and data for 1997–2012 rounded to 3 decimal 
places (Multi2); D, data for 1982–90 rounded to 1 decimal place and data for 1991–2000 rounded to 2 decimal places, data for 2001–12 
rounded to 3 decimal places (Multi3); plus E, annual flow-normalized concentration; and F, flow-normalized load estimates for all 
three rounding scenarios (R0.01 from B; Multi2 from C; and Multi3 from D) and the unrounded data (None from A).
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approach used for calibration in WRTDS—when the half 
window width for time is set to the default of 7 years, only 
estimates within 7 years of the end of the calibration record 
may change with the addition of new data; however, if the 
default window of 7 years is expanded to acquire more 
samples in the window, estimates older than 7 years also may 
be affected. 

Edge effects can be explored using successive 
calibrations, which are sets of model estimates (vectors of 
annual estimates of concentration and load) where new data 
have been incrementally added to the end of the record and 
models are recalibrated. For example, an initial set of annual 
estimates can be generated for the period from 1994 to 
2000. Successive calibrations are executed by incorporation 
of new data (1994–2001, 1994–2002, 1994–2003, and so 
on). Chanat and others (2016) explored the influence of 
incremental incorporation of new data on annual flow-
normalized water-quality estimates in the Chesapeake Bay. 
When they completed successive calibrations for flow-
normalized concentration of two parameters at several sites, 
they observed that in the beginning of the record there was 
a small amount of translation of the successive calibrations 
up and down the y-axis but little difference in the overall 
shape; these translations primarily are due to slight changes 
in the probability distribution of streamflow as more years 
of streamflow are included in the streamflow normalization 
process, which can influence flow-normalized estimates across 
the entire record. Chanat and others (2016) also observed 
that near the end of the record, estimates of flow-normalized 
concentration varied widely between successive calibrations. 

Chanat and others (2016) also compared edge effects of 
model results from WRTDS to results from ESTIMATOR, a 
frequently used 7-parameter regression-based trends model 
equation originally described by Cohn and others (1992), 
using flow-normalized (for WRTDS) or flow-adjusted (for 
ESTIMATOR) concentrations of dissolved inorganic nitrogen 
and total phosphorus. For ESTIMATOR, Chanat and others 
(2016) found flow-adjusted estimates in the beginning of 
the record could change dramatically with the addition of 
new data at the end of the record. A result of the window-
weighting approach used during model calibration in WRTDS 
is that historical estimates remain relatively constant as more 
data are added to the end of the record. Historical estimates 
from regression-based models like ESTIMATOR can vary 
substantially across the period of record (not just at the end) 
as new data are added because all data are weighted the same. 
Importantly, the sensitivity of model coefficients and estimates 
to the incremental incorporation of new data are not issues 
unique to WRTDS but are common among regression-based 
approaches.

Chanat and others (2016) used an earlier version of 
WRTDS, which did not include the edgeAdjust feature 
that has been incorporated into newer versions of WRTDS 
(version 2.2.0 of EGRET, used in this study) to rectify some 
of the previously described edge effects. In previous versions 
of WRTDS, if the half window width for time was 7 years, 

then the model calibrated for observations in the final year of 
the water-quality record would use observations only from 
the previous 7 years (because observations 8 years and older 
have zero weights for time). This small window at the end 
(or beginning) of the record allowed for increased flexibility 
and detection of inflection points but could also lead to 
highly variable estimates of concentration and load with each 
successive addition of new water-quality data. In version 2.2.0 
of WRTDS, when edgeAdjust is set to TRUE, the half window 
width expands near the beginning (and end) of the record, so 
that the model will always use at least 14 years of data in each 
calibration (Hirsch and De Cicco, 2015). Use of this feature 
forces trends to be more linear near the start and end of the 
record and lowers the possibility of changes in slope with the 
addition of new data; however, it also decreases the sensitivity 
of the model to detect changes around an emerging inflection 
point. For a detailed explanation of edgeAdjust, see Hirsch and 
De Cicco (2015). 

While the addition of the edgeAdjust feature helps 
minimize changes in historical estimates as new data are 
added to the calibration record, it does not completely rectify 
the issue. To illustrate the influence of the incremental 
incorporation of new data on WRTDS estimates with the 
edgeAdjust feature in place, successive calibrations were 
completed for total phosphorus and nitrate at sites 01646580 
Potomac River at Chain Bridge, at Washington, D.C., and 
02215500 Ocmulgee River at Lumber City, Georgia. The 
calibration periods for these sites were water years 1982–2012 
and 1972–2012, respectively. To demonstrate the effects of 
adding new data each year, the initial calibration for each site-
parameter combination was run using the period from 1982 or 
1972, depending on the site, to 1992; 20 additional calibrations 
were then run with the start year always set at 1982 or 1972 and 
the end year ranging from 1992 to 2012. The longest calibration 
record used, either 1982–2012 or 1972–2012, depending on the 
site, is hereafter referred to as the “whole-record” calibration. 
Annual concentration, load, flow-normalized concentration, and 
flow-normalized load estimates for both sites and parameters 
and all successive calibrations are shown in figures 12–15.

For all site-parameter combinations, the concentration 
and load estimates for the first 10 or 20 years (depending on 
the site) of the record are identical or nearly identical between 
successive calibrations (figs. 12A,B–15A,B). This is due to the 
window-weighting approach used to estimate the regression 
models in WRTDS, which stabilizes estimates that are 7 or 
more years from the end of the calibration record. The slight 
variations in estimates between successive calibrations in the 
first 10 or 20 years of the record likely are due to the window 
widths being iteratively expanded beyond 7 years because of 
model requirements (WRTDS requires a minimum number of 
samples and will automatically relax user set window widths 
if needed to fulfill that minimum). Estimates in the later part 
of the record show more variability between calibrations. This 
variability primarily occurs within the last 7 years of the end of 
a successive calibration (for example, annual estimates between 
1991 and 1997 for the 1982–97 successive calibration). 
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Figure 12.  Annual time series of concentration, load, flow-
normalized concentration, and flow-normalized load estimates for 
total phosphorus at site 01646580 Potomac River at Chain Bridge, 
at Washington, D.C. Initial calibration period from 1982 to 1992 with 
successive calibrations extending through 2012. laf17-0792_fig13
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Figure 13.  Annual time series of concentration, load, flow-
normalized concentration and flow-normalized load estimates 
for nitrate at site 01646580 Potomac River at Chain Bridge, at 
Washington, D.C. Initial calibration period from 1982 to 1992 with 
successive calibrations extending through 2012. 
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Figure 14.  Annual time series of concentration, load, flow-
normalized concentration and flow-normalized load estimates for 
total phosphorus at site 02215500 Ocmulgee River at Lumber City, 
Georgia. Initial calibration period from 1972 to 1992 with successive 
calibrations extending through 2012. laf17-0792_fig15
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Figure 15.  Annual time series of concentration, load, flow-
normalized concentration and flow-normalized load estimates for 
nitrate at site 02215500 Ocmulgee River at Lumber City, Georgia. 
Initial calibration period from 1972 to 1992 with successive 
calibrations extending through 2012. 
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For both sites and parameters, the concentration 
estimates from successive calibrations are typically within 
20 percent of the estimate from the whole-record calibration 
(figs. 13A–15A). The one exception is for total phosphorus 
concentration at site 01646580 (fig. 12A), where the estimates 
from successive calibrations can differ by more than twice 
that range when compared to estimates from the whole-
record calibration; for example, the 2002 estimate for total 
phosphorus concentration from the 1982–2002 calibration 
(0.076 mg/L) is 40 percent larger than the 2002 estimate 
(0.055 mg/L) from the whole-record (1982–2012) calibration 
(fig. 12A). Compared to the concentration estimates, the 
variability of load estimates between successive calibrations 
appears to be more specific to the site and parameter. The 
greatest variability occurs at site 01646580, where estimates 
of total phosphorus load can vary by 50 percent or more 
between successive calibrations and the whole-record 
calibration (for example, the 1998 estimate shown in fig. 
12B); however, for nitrate at the same site, the variability 
of annual load estimates between successive calibrations is 
much smaller, always less than 15 percent (fig. 13B). At site 
02215500 for total phosphorus and nitrate, the variability 
of annual load estimates is typically less than +/- 20 percent 
(figs. 14B and 15B).

Similar to the concentration and load estimates, flow-
normalized concentration and flow-normalized load estimates 
from successive calibrations are generally in agreement 
for the early part of the record. As observed by Chanat and 
others (2016), some of the site-parameter combinations 
show translations of the successive calibration curves 
up and down the y-axis. These translations (where the 
general shape of the curve is maintained) are most obvious 
for the flow-normalized load estimates (figs. 12D–15D). 
The overall shape of the flow-normalized estimates from 
successive calibrations is generally consistent throughout 
the record, although both flow-normalized concentration 
and flow-normalized load estimates display the most 
variability between successive calibrations around inflection 
points. Compared to flow-normalized estimates of nitrate 
concentration, flow-normalized estimates of total phosphorus 
concentration display more variability between successive 
calibrations and can be more than 40 percent different when 
compared to the estimate from the whole-record calibration 
(for example, the flow-normalized total phosphorus 
concentration estimates for 2002 at site 01646580 [fig. 12C] 
and for 1995 at site 02215500 [fig. 14C]). Flow-normalized 
estimates of nitrate concentration from all successive 
calibrations at both sites are generally no more than 15 
percent different from the estimate derived from the whole-
record calibration (figs. 13C and 15C). A similar pattern 
is observed for successive calibrations of flow-normalized 
load, where estimates of total phosphorus (figs. 12D and 
14D) display more variability than estimates of nitrate (figs. 
13D and 15D). Also similar to the estimates of concentration 
and load, estimates of flow-normalized concentration and 
flow-normalized load appear to stabilize when the year of the 

estimate is more than 7 years from the end of the calibration 
record. However, all flow-normalized estimates still exhibit 
some translational variability (shifting of the curve along 
the y-axis), typically within 10 to 5 percent of the estimate 
from the whole-record calibration, because of changes in 
the streamflow distribution as more data are added to the 
calibration dataset.

The robustness of the estimated trends between 
successive calibrations is an important consideration for trend 
analysis. For this study, trends are defined as the amount or 
percentage change in flow-normalized concentration and 
flow-normalized load between any 2 years. To explore the 
variability in trend estimates between successive calibrations, 
three trend periods were defined (1982–92, 1982–97, and 
1982–2002), and the percentage change in flow-normalized 
concentration and flow-normalized load of nitrate and total 
phosphorus were calculated for each successive calibration 
at both sites (total phosphorus and nitrate). These trend 
estimates determined using successive calibrations were then 
compared to the trend calculated using the flow-normalized 
estimates from the whole-record calibration (1982–2012), 
hereafter referred to as the “whole-record” trend estimate. 
The selected trend periods all begin in 1982 (solid vertical 
line in figs. 12–15) and end in 1992, 1997, and 2002 (dashed 
vertical lines in figs. 12–15). Figure 16 shows the evolution 
of these three trend estimates as new data are incrementally 
incorporated into the calibration dataset, grouped by site and 
estimate type. Specifically, each panel in figure 16 shows 
the percentage difference of the 1982–92, 1982–97, and 
1982–2002 trend estimates calculated from each successive 
calibration compared to the whole-record trend estimate 
versus the number of years the trend end year is from the end 
of the successive calibration. For example, the first 1982–
2002 trend estimate for total phosphorus flow-normalized 
concentration at site 01646580 was made in 2002 when 
there were zero years between endpoints for trend and for 
the calibration record (fig. 16A, blue square at X=0). This 
first estimate of the 1982–2002 trend was around 55 percent 
greater than the whole-record trend estimate of the 1982–2002 
trend (determined using the 1982–2012 calibration record). 
When the calibration period was extended through 2003, the 
1982–2002 trend estimate dropped to only about 10 percent 
different than the whole-record estimate for the 1982–2002 
trend. When the calibration period was extended again through 
2004, the 1982–2002 trend estimate dropped to around -4 
percent different from the whole-record trend estimate. With 
each incremental addition of a year’s worth of new data to the 
calibration dataset, the percentage difference in the 1982–2002 
trend estimate continues to fluctuate within a few percentage 
of zero until the calibration end year is approximately 7 years 
from the end of the trend period. Therefore, for this example, 
the 1982–2002 trend estimate is less than 1 percent different 
from the whole-record trend estimate when the calibration 
period is 1982–2009 or longer (fig. 16A, 7 years on x-axis; see 
also the 1982–2002 and 1982–2009 successive calibrations in 
fig. 12C).
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Figure 16.  Evolution of flow-normalized (FN) trend estimates for 1982–92, 1982–97, and 1982–2002 with the incremental 
incorporation of new data to calibration dataset for nitrate and total phosphorus at sites 01646580 Potomac River at 
Chain Bridge, at Washington, D.C., and 02215500 Ocmulgee River at Lumber City, Georgia. 

When taken together—across both sites, both 
parameters, and all three trend periods—the trend estimates 
appear to stabilize to within about 5 percent difference of 
the corresponding whole-record trend estimate when the 
calibration record extends 5 years beyond the end year of 
the trend period and remains within just a few percentage 
difference of the whole-record trend estimate after 7 years or 
more (fig. 16). Accordingly, when the end year of the trend 
period is within 5–7 years of the calibration end year, the trend 
estimates exhibit more variability as new data are added to 
the calibration record. Generally, this variability is typically 

within +/- 20 percent of the whole-record trend estimate. 
However, the total phosphorus flow-normalized concentration 
and load trends for 1982–97 and 1982–2002 at site 01646580 
exhibit some trend estimates that vary outside of this range 
(figs. 16A–16B). The end years of these trend periods occur 
near a large inflection point in the whole-record calibration. 
While trend estimates for most of the trend periods generally 
increase in accuracy as the calibration period is extended 
beyond the end year of the trend period, this change is not 
necessarily linear, and the least accurate trend estimates do not 
always occur when the trend period and the calibration period 
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have the same end year. For example, trend estimates of nitrate 
flow-normalized load at site 02215500 for the 1982–92 trend 
period are the most different from the whole-record trend 
estimate with the 1982–1994 successive calibration, when 
the calibration end year was 2 years beyond the end year of 
the trend period (fig. 16D). The patterns observed for these 
sites and parameters indicate the variability of trend estimates 
caused by the incremental incorporation of new data in the 
calibration dataset likely varies by site, parameter, and if the 
trend period ends near an emerging inflection point.

Continuing with the same examples, even though the 
magnitude of trend estimates varied a great deal between 
successive calibrations and the whole-record calibration, the 
direction of the trend estimates was relatively stable as new 
data were incrementally added to the calibration record. For 
the 1982–92 trend period, there are trend estimates from 20 
successive calibrations that can be compared; for the 1982–97 
trend period, there are 15 trend estimates for comparison; and 
for the 1982–2002 trend period, there are 10 trend estimates. 
In total, that equals 45 trend estimates for each site, parameter, 
and estimate type (concentration or load) combination to 
compare to the corresponding whole-record trend estimate. 
For total phosphorus trends at site 01646580, there were 
only 2 concentration and 2 load trend estimates derived from 
the successive calibrations that differ in direction from the 
corresponding whole-record trend estimate. For nitrate trends 
at the same site, there was only 1 concentration and 1 load 
trend estimate that differed in direction. For site 02215500, 
the direction of all the trend estimates calculated using the 
successive calibrations, for both total phosphorus and nitrate 
concentration and load, was the same as the corresponding 
whole-record trend estimate. Although trend direction 
reversals at these two sites between successive calibrations 
and the whole-record calibration were rare, other sites and 
parameters may have different outcomes. 

As shown in the successive calibrations in figures 
12–15, if a trend period is relatively short, possibly less 
than 5 years, changes in trend direction between successive 
calibrations may be more likely. For example, if a 3-year 
trend period between 1992 and 1995 is considered for flow-
normalized total phosphorus load at site 01646580 (fig. 12D), 
the 1982–95 calibration indicates decreasing loads between 
1992 and 1995. When adding 2 additional years of data to 
the calibration period (1982–97), the flow-normalized load 
estimates from that successive calibration indicate no change 
in load from 1992–95. After adding another 2 years of data to 
the calibration (1982–99 successive calibration), the load trend 
between 1992 and 1995 is increasing and remains so for all 
successive calibrations ending after 1999. This example and 
the successive calibrations shown in figures 12–15 indicate 
that the direction of trend estimates is more robust for longer 
trend periods.

A full exploration into the influence of the incremental 
incorporation of new data on WRTDS estimates has yet to 
be accomplished. Such an effort would help to more fully 
characterize edge effects at a diverse set of sites and possibly 

allow for greater insight into trend estimates. The successive 
calibrations shown in figures 12–15 indicate edge effects 
are most pronounced around an emerging inflection point. 
A better understanding of edge effects in flow-normalized 
estimates may help to identify emerging inflection points 
during the last few years of the record, arguably the years 
that are of greatest interest to policy makers and the 
general public. It is also possible that dramatically different 
streamflow conditions in the first or last few years of the 
record may also induce variable flow-normalized estimates in 
successive trends, though this effect has not been explored. 
Several recent studies (Hodgkins and Dudley, 2011; 
Hirsch and Archfield, 2015) have indicated increases in the 
frequency, magnitude, and duration of extreme hydrologic 
events, thus a better understanding of the influence of 
extreme hydrology on edge effects is likely to grow in 
importance in the future.

As described previously in this report, WRTDS models 
were calibrated using all the available data for each site-
parameter combination; furthermore, all annual estimates, 
including those for the start and end years, whether or not 
these start and end years were also the first or last years 
of the calibration dataset, were reported (in data releases) 
as long as data passed all relevant screens for the trend 
period. This decision makes between-site comparisons more 
nuanced because the calibration period varies depending 
on the site and parameter. Some sites have trend periods 
that are buffered by 7 or more years of record prior to the 
start of the trend period or have records extending through 
calendar year 2014, which provides additional stability 
for the reported 2012 trend estimates, whereas other sites 
have no data beyond the trend periods. For example, annual 
estimates for 2011 can be reported when a site-parameter 
combination has a calibration period from 1965 to calendar 
year 2014 or from 2003 to 2011. Nevertheless, this decision 
more accurately characterizes changes in water quality at 
individual sites over time because not only are more water-
quality data included in the calibration, but more streamflow 
data are used to develop the probability distributions from 
which flow-normalized estimates are generated. Streamflow 
can have broad periodic fluctuations in magnitude, and the 
capture of these fluctuations over as long a time as possible 
provides more robust information to the model. Because of 
the window-weighting approach used during the calibration 
of regression models in WRTDS, the decision to calibrate 
models using all available streamflow data has some 
influence on the model coefficients but could have more 
considerable influence on the flow-normalized estimates. 
Changes in the concentration-flow relation might occur 
during periods of missing water-quality data and could 
affect flow-normalized estimates by an unknown magnitude. 
Variability of streamflow magnitudes can be assessed 
through the analysis of streamflow records; however, for 
sites with periods of streamflow without water-quality data, 
determination of changes in concentration-flow relation is 
impossible because of the lack of data. 
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Limitations on Trend Analysis with the 
Seasonal Wave (SEAWAVE–Q) Model 

The SEAWAVE–Q model is a time constant model, 
unlike WRTDS. The seasonal wave term in the model 
(equation 22; visualized in Ryberg and Vecchia, 2013, 
appendix 3) that represents intra-annual variability in 
concentration assumes a constant application period or 
periods that result in a constant time at which concentration 
reaches a maximum. This seasonal wave is generally very 
effective for capturing the pulsed input of pesticide and 
the decay, or decline in concentration after application; 
however, it does not adjust for any changes in cropping 
patterns or climate over the period of record that might 
change the ideal seasonal wave. The trend (equation 21) is 
constant over the trend period, when in actuality the period 
may experience a series of differing upward and downward 
trends as concentrations respond to climate, market, and 
other forces. The model does not adjust for potential serial 
correlation (as WRTDS does with bootstrapping); however, 
the effects of serial correlation were reduced by thinning the 
pesticide data to no more than weekly samples before trend 
analysis (see the “Data Thinning” section in the “Pesticide 
Data Processing” section).

Limitations of the Ecology Trend Method

Limitations of the ecology trend method are mostly 
artifacts of the inherent high interannual variability 
associated with stream ecology monitoring data combined 
with low statistical power associated with small sample 
sizes. Interannual variability among and within stream 
communities is influenced by a variety of factors, including 
natural fluctuations in climate, human induced disturbance, 
and outbreaks of disease and invasions of nonnative species. 
Accounting for disease and invasion would be difficult 
given the scale and design of this trend study and examining 
the influence of human disturbance was beyond the scope of 
this assessment. Fluctuations in climate are often strongly 
linked to changes in community structure (Mazor and 
others, 2009; Greenwood and Booker, 2015); however, 
these influences are likely assemblage, time, and regionally 
specific. Limited period of record, low sample density, and 
the inability to group similar sites because of the sparse 
distribution and large geographic coverage prevented any 
adjustment in the biological response by more than one 
exogenous variable during analysis. Additional limitations 
are discussed in the “Ecology Results” section. 

Laboratory Method and Performance 
Considerations for Trend Interpretation

National Water Quality Laboratory Method and 
Procedure Changes

For trend studies, it is important to identify major 
changes in laboratory methods or procedures that may induce 
a bias in water-quality determinations and possibly produce 
an artificial step trend in the data. Major changes in laboratory 
methods and the resulting analytical values at the NWQL 
have been documented in a variety of resources. For the most 
part, these have been documented in USGS publications and 
internal memorandums—some of which are available online 
to USGS employees. Using these resources (appendix 3, table 
3–1) timelines of potentially important changes in NWQL 
laboratory methods and procedures were developed for the 
target constituent groups in this study (appendix 3, tables 3–2 
to 3–6). 

Note that the method and procedure changes documented 
in these tables (tables 3–2 to 3–6) apply only to data analyzed 
at the NWQL, and the information contained within these 
tables is not exhaustive or definitive; other changes and 
errors may have occurred during the study period but were 
not documented in the available resources (table 3–1). The 
timelines were pieced together using disparate technical 
memorandums, reports, and Rapi-Notes (internal USGS 
memoranda from the NWQL) and may be missing important 
changes. Because of the time-consuming nature of this 
compilation, lack of public access to similar information for 
some other laboratories, and the total number of different 
laboratories that produced the data in this study, similar 
timelines for other laboratories were not compiled.

Changes in Laboratory Analysis and Sample 
Collection Methods

In trend analysis, the reported concentration of a 
particular target parameter is assumed to be a random variable 
that depends not only on the true riverine concentration 
but also on the way the sample is collected, preserved, and 
analyzed. Inevitable changes in analytical methods and in 
sample collection and preservation methods are nonrandom 
events that can manifest as step changes in concentrations and 
thus can lead to bias in some of the trend results. Such bias, if 
large enough in relation to environmental trends, may affect 
the interpretive and causal analyses. A complete description 
of this study’s investigation into the occurrence of step trends 
including background, methods, and results is provided in 
appendix 4. Cases where potential laboratory or field method 
changes could have produced bias large enough to affect 
interpretation of trends on a regional or national scale also are 
provided in appendix 4.
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The presence of step trends in flow-normalized 
concentrations of selected water-quality constituents was 
evaluated using 4-year moving windows beginning with 1974 
(January 1, 1972 through December 31, 1975) and ending with 
2011 (January 1, 2009 through December 31, 2012). Water-
quality data consisted of a national dataset of concentrations 
compiled from samples collected during 1972–2012 by the 
USGS and various State agencies. These data are described in 
the “Water-Quality, Pesticide, and Ecology Data Compilation” 
section and in appendix 4. Data were harmonized and 
processed but were not screened for trend analysis.  The 
purpose of the step-trend analysis was to compare step trends 
between the USGS and outside agency sites, and among the 
various outside agency sites, to determine cases where and (or) 
when anomalous trends that may reflect changes in laboratory 
or field sampling methods, rather than environmental changes, 
could cause difficulties in the interpretive and causal analyses 
of the final trends. 

For each 4-year moving window, a two-stage flow-
normalization process based on streamflow anomalies 
(orthogonal components of log-transformed daily streamflow 
representing annual, seasonal, and daily variability) was used 
to remove flow-related variability in concentrations, and the 
flow-normalized concentrations were analyzed for step trends. 
Highly variable (through time) and sparse (in space) site 
locations for both USGS and outside agency sources presented 
difficulties for making quantitative comparisons for many time 
windows and constituents. However, analysis of regional trend 
patterns for USGS and outside agency sites indicated that 
regional trend patterns for the vast majority of constituents 
and years generally were consistent among USGS and outside 
agencies, and there were few instances where anomalous 
trends, likely because of laboratory or field method changes, 
clearly stood out from regional trend patterns. Laboratory 
or field method changes probably had a limited effect on 
flow-normalized concentrations compared to flow-related 
variability and regional environmental variability or change. 
Although undocumented laboratory and field method changes 
likely did occur, the detection of the relatively small effects 
of those changes (compared to environmental variability or 
trends) would require a combination of higher (and more 
uniform) sampling frequencies, more colocated or nearly 
colocated sites from USGS and outside agencies, and (or) 
more detailed information on timing of changes along with 
field replicate samples. 

Laboratory Performance Bias Evaluation 

Temporal changes in the performance of laboratory 
analytical methods used to measure inorganic and organic 
concentrations have the potential to create artificial trends or 
to introduce noise that would make true environmental trends 
harder to detect. In order to track laboratory performance, the 
NWQL and the USGS District Water-Quality Laboratory in 
Ocala, Florida (until the Ocala laboratory was closed in 2004), 

submitted the results of double-blind QC reference samples to 
the USGS Branch of Quality Systems as part of the Inorganic 
Blind Sample Project and the Organic Blind Sample Project. 
About half of these double-blind reference samples were from 
natural-matrix waters derived from snowmelt, surface-waters, 
or ground-water sources; the remaining samples were low 
ionic-strength solutions made from deionized water instead 
of natural-matrix waters to preserve the low conductivity 
(Woodworth and Connor, 2003; Amy Ludtke, U.S. Geological 
Survey, Office of Water Quality, written commun., September 
2015). The natural-matrix standard reference samples were 
used as is (undiluted), diluted with deionized water, or mixed 
in varying proportions with other standard reference samples 
in order to achieve a variety of concentrations within the 
range of concentrations that corresponds to the range typical 
of environmental water samples. For each reference sample, 
the NWQL or Ocala value was compared to the target value, 
which was the median concentration for the same reference 
sample measured by about 150 USGS and non-USGS 
laboratories. 

The recovery of each NWQL and Ocala blind sample for 
all of the parameters used in the trend analysis for nutrients, 
major ions, salinity, and carbon was calculated as the 
measured concentration divided by the target concentration 
and was expressed as a percentage. Plots of recovery results 
are presented in graphs (appendix 5), grouped by pmcode, 
which is a combination of parameter code and method code. 
For example, pmcode 00930AA035 corresponds to parameter 
code 00930 and method code AA035. A list of pmcodes, 
grouped by parameter code and parameter name, is provided 
in appendix 5, table 5–1. Although not used to adjust results 
in this study, the recovery data can be used in conjunction 
with trend results to consider whether changes in laboratory 
performance over time could contribute to the trend results for 
a specific parameter.

Measured concentrations of nutrients, major ions, 
salinity, and carbon parameters to be analyzed for trends were 
not adjusted to compensate for changes in laboratory recovery 
over time for several reasons. Double-blind samples have been 
submitted to the NWQL since 1984 and the Ocala laboratory 
since 1985; no blind samples are available before that time. As 
a result, no recovery adjustments could be made to measured 
concentrations prior to 1984. Additionally, censored data could 
not be adjusted because detection limits were established 
earlier by the laboratory using a separate, predefined approach 
that incorporates the variability of a laboratory method 
(Oblinger Childress and others, 1999). Because the double-
blind samples are intentionally low in sediment or are filtered 
prior to distribution, the samples are not representative of 
natural waters with higher sediment concentrations (and thus 
potential matrix interference). This approach may lead to 
inaccurate recovery values for parameters that typically have 
a particulate component, such as total phosphorus or Kjeldahl 
nitrogen. Finally, the recovery results apply only to data from 
the NWIS database that had the analyzing entity defined 
as NWQL or as District Water-Quality Laboratory, Ocala, 
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Florida, for specific parameters and methods. A majority of the 
samples in the NWIS database were missing either the analyzing 
entity or the analytical method, so it was unclear whether these 
data should be adjusted. Similar adjustments also could not 
be made to water-quality data from non-NWQL laboratories. 
Although many of these laboratories engage in similar quality-
control practices, it was beyond the scope of this study to 
compile and interpret those data. Because of these limitations, 
no additional evaluation of laboratory-related changes over time 
was undertaken as part of this study other than what is described 
in appendix 4. 

Site-Specific Considerations when Modeling 
Trends with the Weighted Regressions on Time, 
Discharge, and Season (WRTDS) Model 

All models are constrained by certain limitations. At the 
most basic level, WRTDS (and many other regression-based 
methods) describes changes in water quality using a linear 
model, allowing for relatively straightforward interpretation and 
solutions that can be extended in a variety of ways to account 
for nonlinear relations but nevertheless places limitations on 
the model structure and possibly on predictive power. For 
WRTDS in particular, the weighting approach used during model 
calibration does not accurately characterize abrupt step changes 
in water-quality data. Also, the flow-normalization process in 
WRTDS uses daily streamflow values across the entire period 
of record, which can affect the flow-normalized estimates when 
there is a trend in streamflow. This section will briefly discuss 
these issues and their influence on WRTDS model results. 
This discussion is not meant to be an exhaustive exploration 
or characterization of these issues but rather provides some 
important caveats on the results of this study.

Step Changes in Water-Quality Data
The WRTDS model uses weighted regression to calibrate 

each regression model. The individual weights assigned to 
observations during each calibration are determined using 
three windows: (1) time, (2) season, and (3) streamflow. This 
weighting scheme most accurately characterizes gradual changes 
in water quality over time, such as those related to incremental 
changes in the watershed but does not appropriately characterize 
step changes. Abrupt changes in water quality, for example, 
because of the construction or upgrade of a large wastewater 
treatment plant, would be smoothed out over a period of about 
7 years because of the window-weighting approach used in 
WRTDS. 

Other common approaches for trend estimation that 
presume a linear relation between water quality and time also 
struggle with accurately characterizing step changes in water 
quality. Nonparametric tests, such as the Mann-Kendall test 
(Mann, 1945; Kendall, 1975) or the Seasonal Kendall test, are 
typically accompanied with a Sen slope estimate that can imply, 
but is not based on, a linear trend over time. For trend analyses 

that use linear regression, temporal change is typically described 
as a linear or perhaps quadratic trend over time, though these 
models can be extended to accommodate step changes by 
incorporating an interaction term that divides the water-quality 
record into distinct periods on either side of a step change. 

To illustrate the effect of a water-quality step change on 
WRTDS estimates, the example of total phosphorus at site 
mnVR–15.6_MNMCES located on the Vermillion River near 
Empire, Minnesota, was considered. The Empire Wastewater 
Treatment Facility shifted its streamflow from the Vermillion 
River to the Mississippi River in the late 2000s, causing a 
large decrease in total phosphorus concentrations (Minnesota 
Pollution Control Agency, 2012). The observed total phosphorus 
concentration data show this large abrupt decrease in 2007 (fig. 
17). This abrupt change in total phosphorus concentrations is 
incorrectly characterized in the WRTDS output as a gradual 
decrease in estimated and flow-normalized concentrations 
beginning around 2002 and extending through 2012 (fig. 18). 
The residuals for this site clearly show a poor model fit for the 
years surrounding the step change in total phosphorus (fig. 19).

The WRTDS model results were rejected for any sites or 
constituents that had a visually recognizable step change in 
the water-quality data or in the model residuals. This visual 
evaluation was a manual and somewhat subjective process that 
occurred during review of WRTDS model diagnostics. 

Trends in Streamflow
One of the largest challenges in estimating trends is 

deciphering the proportion of variability in concentration, load, 
or ecologic metrics that arise from variability in streamflow 
versus the proportion that is due to other changes and processes 
in the watershed or channel. Many water-quality parameters 
and ecological metrics are related to streamflow, and changes 
in streamflow can make it challenging to evaluate progress or 
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Figure 17.  Observed total phosphorus concentrations at site 
mnVR–15.6_MNMCES Vermillion River near Empire, Minnesota, 
for 1990–2012. 
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Figure 18.  The Weighted Regressions on Time, Discharge, 
and Season (WRTDS) estimates of annual total phosphorus 
concentrations and flow-normalized total phosphorus 
concentrations for site mnVR–15.6_MNMCES Vermillion River 
near Empire, Minnesota (paired with streamgage 05345000). 

deterioration in response to human activities if the influence 
of streamflow is not considered. Trend analysis methods used 
in this report can filter out the effect of year-to-year variability 
in streamflow but do not have mechanisms to account for 
gradual or abrupt changes in streamflow. All three trend 
analysis methods used in this study to assess trends in water 
quality, pesticides, or ecology incorporate streamflow data 
as an explanatory variable in some form (for example, daily 
values in WRTDS and antecedent streamflow metrics for the 
ecology model). Because of the reliance of these models on 
streamflow, abrupt or gradual changes in streamflow over time 
may influence the results produced by these models; however, 
WRTDS is particularly sensitive to nonstationary streamflow, 
primarily because of the flow-normalization process.

Details of the analysis of gradual (monotonic) and abrupt 
trends in annual streamflow at all streamgages used for trend 
analysis in this study can be found in appendix 6, which also 
presents a summary of streamflow trend results for water-
quality, pesticide, and ecological sites for all trend periods. 
Streamflow trend results for all streamgages used in this study 
are available in a data release (Farmer and others, 2017). 
The results of the annual streamflow trends were developed 
to assist in identifying sites where changing streamflow may 
be influencing the trend results. While this process was not 
completed for this report, these streamflow trends can serve 
as a basis for a future analysis. As mentioned previously, 
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Figure 19.  The Weighted Regressions on Time, Discharge, and 
Season (WRTDS) residuals for total phosphorus concentrations 
at site mnVR–15.6_MNMCES Vermillion River near Empire, 
Minnesota, versus year.

this is particularly important for the WRTDS flow-normalized 
estimates because the interpretation of the water-quality trends 
differ from standard interpretation when there is a systematic 
change in streamflow over time. The following subsections 
more fully describe the influence of nonstationary streamflow 
on WRTDS trend results.

Gradual Changes in Streamflow
Because the flow-normalization process is designed to 

remove the random variability in water quality related to the 
year-to-year variability in streamflow, flow-normalized load 
and concentration curves generally appear like a locally-
weighted scatterplot smoothing (LOWESS) (Cleveland, 1979; 
Cleveland and Devlin, 1988) line through the annual load and 
concentration estimates (even though flow normalization uses 
a completely different process than LOWESS). LOWESS is a 
nonparametric regression approach that uses local weighting of 
nearby observations to fit a smooth line through bivariate data. 
When there is a gradual trend in streamflow over the calibration 
period, this can influence the flow-normalized estimates and 
cause the flow-normalized load and concentration curves to 
depart from the annual load and concentration estimates. For 
example, site 09498500 Salt River near Roosevelt, Arizona, has 
decreasing streamflow from the early 1980s through 2012, as 
demonstrated by large decreases in the annual 7-day minimum 
streamflow, mean daily streamflow, and 7-day maximum 
streamflow (fig. 20). Over the same period of time, sampled 
total-dissolved-solids concentrations have increased (fig. 21). 
The WRTDS annual concentration and load estimates from 
1982–2012 are increasing and decreasing, respectively, over 
time, whereas the flow-normalized concentration and flow-
normalized load estimates vary little over the trend period and 
do not follow the annual estimates (fig. 22).
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Figure 20.  Annual 7-day minimum, mean daily, and 7-day 
maximum streamflow at site 09498500 Salt River near Roosevelt, 
Arizona.
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Figure 21.  Total-dissolved-solids concentrations over time at site 
09498500 Salt River near Roosevelt, Arizona.

Theoretically, a gradual change in streamflow equates to 
a gradual shift in the probability distributions of streamflow 
at a site over time, indicating that flows in the beginning 
of the record are not characteristic of those at the end of 
the record. Gradual changes in streamflow can be due to 
situations such as increasing urbanization, increasing use of 
artificial land drainage, gradual adoption of various land-
management practices that influence streamflow (such as farm 
ponds or stormwater control structures), or gradual depletion 
of groundwater (causing decreases in base streamflow in 
streams). Gradual changes in streamflow can also be the 
result of slow shifts in regional climate. A gradual shift in the 
probability distributions of streamflow over time undermines 
the expectation of stationarity of streamflow that is a stated 
assumption of the flow-normalization process. In the seminal 
paper introducing WRTDS, Hirsch and others (2010) describe 
the flow-normalization process:

Flow-normalization eliminates the influence of the 
temporal pattern of discharge, by viewing the dis-
charge on any given day as a random sample of the 
discharges that might have taken place on that day. 
Thus, the method requires some means of estimating 
the probability distribution of discharge values for 
that day. Flow-normalization uses the actual histori-
cal sample of discharge values for a given day, with 
each historical value being assigned an equal prob-
ability of happening in any given year.
A gradual trend in streamflow clearly invalidates the 

assumption that streamflow on any given day is a random 
sample drawn from the probability distribution of streamflow 
values on that day across the period of record. When there is 
a gradual trend in streamflow, some streamflow values may 
be more likely to occur than others, depending on the point 
in time.
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Figure 22.  The Weighted Regressions on Time, Discharge, and 
Season (WRTDS) annual concentration and load estimates and 
flow-normalized curves for total dissolved solids at site 09498500 
Salt River near Roosevelt, Arizona.

For sites like 09498500 (fig. 20), where there is a 
strong gradual trend in streamflow causing the probability 
distributions of daily streamflow to be nonstationary over 
the period of record, the theoretical description of the flow-
normalized estimates differs from the definition presented in 
Hirsch and others (2010). Any given streamflow record can 
be considered the sum (or product) of seasonal, trend, and 
random components, and, as presented by Hirsch and others 
(2010), the flow-normalization process is designed based on 
the assumption that the trend component in the streamflow 

record is very small compared to the other two components. 
In the context of nonstationary streamflow, flow normalization 
removes the random year-to-year variability as a result of 
streamflow and uses a consistent annual set of estimated 
probability distributions of daily streamflow; thus, the flow 
normalization process is estimating concentration and load as 
if the probability distributions of streamflow were stationary. 
This hypothetical situation of stationary streamflow at a site 
where streamflow is not stationary leads to differences in the 
interpretation of flow-normalized estimates, depending on 
whether there is a trend in streamflow at the site.

Flow-normalized estimates show the variability of 
concentration or load without the direct influence of changes 
in streamflow, whether those changes are random, which is 
what occurs at sites without a trend in flow, or random and 
systematic, which is what occurs at sites with a trend in flow. 
For sites without a trend in streamflow, the flow-normalized 
estimates describe the general in-stream water-quality 
conditions, essentially the water-quality trend experienced 
by the biota in the stream, and these changes are typically 
attributed to human activities in the basin; however, for sites 
with trends in streamflow, the argument is made that flow-
normalized estimates do not describe in-stream water-quality 
conditions and instead describe changes in the inputs to the 
stream or changes in some other in-channel processes not 
related to changes in flow. Changes to the input of constituents 
to the stream are also typically attributed to human activities 
in the basin or to changes in climate or other physical 
processes in the channel or basin (but are not correlated with 
the changes in flow). For example, the annual estimates of 
concentration at site 09498500 have increased over time, but 
the flow-normalized estimates of concentration have changed 
little, indicating that although in-stream total dissolved-solids 
concentrations have increased, the input of total dissolved 
solids to the stream has largely remained unchanged (fig. 22). 
Furthermore, this pattern indicates that changes in streamflow 
(possibly driven by humans or natural processes), not 
increases in the input of total dissolved solids to the stream, 
are affecting water quality at this site.

An improved approach that accounts for trends in the 
streamflow record would help to better align the interpretation 
of flow-normalized estimates between sites with and without 
streamflow trends. Accounting for trends in streamflow would 
allow for a better description of the general trend in in-stream 
concentrations and loads at a site with a trend in streamflow 
and would make the interpretation of flow-normalized 
estimates between sites with and without a trend in streamflow 
directly comparable. If such a method were developed, it 
would allow for the removal of only the random variability 
of streamflow and would describe the in-stream water-quality 
changes whether or not there is a streamflow trend at the site. 

Identification of the magnitude of the streamflow trend, 
which results in the divergence of the flow-normalized 
estimates from the annual estimates and the subsequent need 
to qualify interpretations of the flow-normalized estimates, has 
yet to be studied and likely varies by site and constituent. The 
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response of flow-normalized estimates to increasingly larger 
trends in streamflow is likely gradational, and identification 
of a single threshold for which the trend in streamflow is large 
enough to cause a divergence, or deciding what constitutes 
a divergence, of the flow-normalized curve from the annual 
estimates may be difficult. Current recommendations suggest 
professional judgement is the appropriate method for deciding 
if trends in streamflow are large enough to influence flow-
normalized estimates (Hirsch and others, 2010; Hirsch and 
De Cicco, 2015). To assist with identifying sites that may 
have gradual trends in flow, nonparametric Mann-Kendall 
trend tests were run using annual streamflow statistics (7-day 
minimum, mean daily, and 1-day maximum) for all gages used 
in this study (see appendix 6 for details). Sites were flagged 
in Farmer and others (2017) to indicate a possible monotonic 
trend in streamflow if the results of these statistical tests were 
significant. This information can be used when evaluating the 
model diagnostics and interpreting the model output but did not 
affect any results presented in this report. Sites with significant 
trends in streamflow were not automatically excluded from this 
study because their annual and flow-normalized results still 
provided important information. When there was a significant 
trend in streamflow, the flow-normalized estimates may have 
diverged from the annual estimates.  In these cases, the flow-
normalized estimates reflect the portion of the in-stream trend 
that was caused by factors other than changes in streamflow, 
whereas the annual estimates reflect the overall in-stream 
trend that was caused by all factors, including random and 
systematic changes in streamflow. Future analyses can draw 
upon this information to better describe the streamflow trend 
that results in diverging flow-normalized and annual estimates 
and identify specific sites with trends in streamflow when the 
interpretation of the flow-normalized estimates differs from 
that at sites with stationary streamflow.

Abrupt Changes in Streamflow

While gradual trends in streamflow cause a nuanced 
interpretation of the flow-normalized estimates, abrupt changes 
in streamflow also are problematic for calibration and flow 
normalization in WRTDS. The relation of hydrology to water 
quality may be very different before and after a step change in 
streamflow. The weighting approach used to calibrate WRTDS 
would distribute this change across the time window (typically 
14 years for this study, as the half-window width is 7 years), 
misrepresenting an abrupt change in the modeled estimates. 
Use of the entire streamflow record for flow normalization 
would be inappropriate because the magnitude and frequency 
of some flows may be very different before and after the step 
change. Until WRTDS is updated to divide the record into 
periods with similar hydrologic conditions (that is, before 
and after the abrupt shift in hydrology) that each meet the 
assumption of stationarity, the use of WRTDS with streamflow 
records containing a step change is inappropriate. Furthermore, 
it is unclear what magnitude of step change in streamflow 
corresponds to inappropriate use of the WRTDS model. This 
particular issue has yet to be fully explored. 

Abrupt shifts in streamflow may be induced by 
engineered structures or management decisions, such as 
the construction or removal of a dam, large and abrupt 
changes in water diversions into or out of the watershed, 
and by regional weather patterns. For a relatively short 
streamflow record, an abrupt shift in hydrology that persists 
for a number of years, and that does not coincide with an 
engineered activity in the basin, can easily be construed as 
a step change in the probability distribution of streamflow. 
However, if the streamflow record was extended back in time 
and multiple shifts in the hydrology could be observed, it 
would be reasonable to conclude that there is a high degree of 
persistence, and the hydrology is not actually nonstationary 
(Cohn and Lins, 2005). In this situation, the flow-normalization 
process would be appropriate and would be assumed to 
accurately reduce the variability in water quality associated 
with year-to-year variations in streamflow. 

To illustrate, annual mean daily streamflows since 1992 at 
the James River in South Dakota (site sd460761) show rather 
abrupt shifts in hydrologic conditions over time (fig. 23). A 
wet period can be observed from 1993 through 2001, a 5-year 
dry period follows, then another 5-year wet period, and finally 
perhaps a return to another dry period in the final 2 years 
of record. Because this record shows high autocorrelation 
during specific periods of time and several periods of low or 
high streamflows over time, the flow-normalization process 
is still an appropriate means of reducing the variability of the 
concentration and load estimates by removing the random 
variability as a result of streamflow. The annual WRTDS 
results for total dissolved-solids flow-normalized load at this 
site are also shown in figure 23. During the 2002–6 dry period, 
the annual loads plot below the flow-normalized load curve, 
indicating that these low values are influenced by the relatively 
low streamflows for those years. Overall, the flow-normalized 
curve smooths out the variation as a result of streamflow and 
reveal the long-term pattern of change of total dissolved-solids 
load at this site. 

To assist with identifying sites that may have abrupt 
changes in flow, Pettitt tests (Pettitt, 1979) were run using 
annual streamflow statistics (7-day minimum, mean daily, and 
1-day maximum) for all gages used in this study (see appendix 
6 for details). Similar to the analysis of gradual trends in 
streamflow described above, sites were flagged in Farmer and 
others (2017) according to the results of the Pettitt tests to 
indicate if a possible step change in streamflow occurred at a 
site. Deciphering between periodic shifts and a step change in 
hydrology can be a challenge with a short streamflow record. 
Also, the Pettitt test only indicates if at least 1 change point 
occurs in the streamflow record thus sites where the Pettitt 
change test indicated a significant step change may actually 
have multiple shifts in streamflow. Although this information 
was not used when evaluating the model diagnostics, it can 
be used in future analysis to more specifically identify water-
quality sites that are affected by a step change in streamflow. 
Sites with significant streamflow step trends were not 
automatically excluded. 
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Figure 23.  The A, mean annual daily streamflow and B, 
estimated load and flow-normalized load for total dissolved 
solids at site sd460761 James River in South Dakota (streamgage 
06478500). 

Trend Results
Trend results for each of the trend models are 

summarized in appendix 7 and discussed in the following 
sections. Table 7–1 lists sites grouped by a proposed umbrella 
identification that were used in the trend analysis for different 
parameters but were located on the same unique identifier 
(ComID), matched with the same streamgage, and did not 
have any intervening influences, so they could be used 
together to compare trend results for different parameters. 
Trend results for nutrient, sediment, major ion, salinity, and 
carbon parameters, pesticides, and fish, invertebrates, and 
diatoms are presented in tables 7–2 through 7–4, respectively. 
In total, nearly 12,000 trends were evaluated in this study; 
there were 11,729 combinations of sites, parameters, and trend 
periods. In some cases, trends were evaluated for different 
parameters at colocated or nearby sites and may need to 
be compared for trend interpretation or causal analysis. In 
many cases, the start and end years of a trend period among 
parameters varied by a year. For comparing trends among 
different water-quality, pesticide, and ecology parameters 
the variations in start and end years of the four trend periods 
allowed by the screening criteria resulted in equivalent time 
periods. For example, a trend determined for the period of 
1993–2011 was considered equivalent to a 1992–2012 trend 
and a 2003–11 trend was considered equivalent to a 2002–12 
trend, and so on.

Nutrient, Sediment, Major Ion, Salinity, and 
Carbon Results

A summary of trend results for all water-quality 
parameters and trend periods for both flow-normalized 
concentration and flow-normalized load evaluated using the 
WRTDS model is presented in appendix 7, table 7–2; results 
of rejected models are not presented. Year-to-year variability 
in streamflow often results in changes in water quality; 
therefore, flow-normalized trends in load and concentration 
are better suited to illustrate how water quality has changed 
over time. Final trend sites for each parameter evaluated for at 
least one trend period using the WRTDS model are shown in 
figures 24–42. For a specific site, parameter, and trend period, 
a trend result of “true” indicates that the two-sided p-value 
generated in the output file of the EGRETci package for the 
WRTDS model is less than the critical alpha value of 0.1; 
therefore, the null hypothesis (there is no trend in the data) 
should be rejected, and there is a detectable trend in the data 
for the specified time period. Conversely, a trend result of 
“false” indicates that the null hypothesis cannot be rejected, 
and there is no statistically significant trend in the data for the 
specific time period at the critical alpha value. Complete trend 
results, including annual estimates of concentration and load, 
with and without flow normalization, are reported in De Cicco 
and others (2017). Note that likelihood coefficients also are 
reported for each trend result in De Cicco and others (2017). 
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Figure 24.  Final ammonia trend sites evaluated for at least one trend period. 
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Figure 25.  Final nitrate trend sites evaluated for at least one trend period.
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Figure 26.  Final filtered orthophosphate trend sites evaluated for at least one trend period.
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Figure 27.  Final unfiltered orthophosphate trend sites evaluated for at least one trend period.
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Figure 28.  Final total nitrogen trend sites evaluated for at least one trend period.
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Figure 29.  Final total phosphorus trend sites evaluated for at least one trend period.
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Figure 30.  Final suspended sediment concentration trend sites evaluated for at least one trend period.
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Figure 31.  Final total suspended solids trend sites evaluated for at least one trend period.
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Figure 32.  Final calcium trend sites evaluated for at least one trend period.
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Figure 33.  Final chloride trend sites evaluated for at least one trend period.
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Figure 34.  Final magnesium trend sites evaluated for at least one trend period.
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Figure 35.  Final potassium trend evaluated for at least one trend period.
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Figure 36.  Final sulfate trend sites evaluated for at least one trend period.
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Figure 37.  Final sodium trend sites evaluated for at least one trend period.
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Figure 38.  Final specific conductance trend sites evaluated for at least one trend period.
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Figure 39.  Final total dissolved solids trend sites evaluated for at least one trend period.
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Figure 40.  Final alkalinity trend sites evaluated for at least one trend period.
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Figure 41.  Final dissolved organic carbon trend sites evaluated for at least one trend period.
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Figure 42.  Final total organic carbon trend sites evaluated for at least one trend period.
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The likelihood-based approach to reporting trend results 
is an alternative to the null-hypothesis significance testing 
approach. The likelihood-based approach has been used 
previously by the Intergovernmental Panel on Climate Change 
and is discussed at length in the context of water quality in 
Hirsch and others (2015). The likelihood-based approach gives 
more intuitive information on the certainty of a trend estimate 
and avoids the arbitrary classifications imposed by selecting an 
alpha value to assess significance. (For example, if the alpha 
value is selected to be 0.1, trend A with a p-value of 0.099 
will be classified as significant, while trend B with a p-value 
of 0.11 will be classified as nonsignificant. In reality, there 
is no meaningful difference between these two p-values.) A 
complete discussion about the results provided by the WRTDS 
model and how to explore and interpret the results is included 
in Hirsch and De Cicco (2015) and Hirsch and others (2015). 
Two examples of WRTDS trend results from this study are 
provided below using annual results and trend period results.

At site 01377000, Hackensack River at Rivervale, 
New Jersey, mean annual sulfate concentrations and flow-
normalized sulfate concentrations are clearly decreasing over 
time (fig. 43A). Similarly, estimates of annual sulfate load 
and flow-normalized sulfate loads are decreasing over time 
(fig. 43B). Sulfate trends were evaluated for the 1982–2012, 
1992–2012, and 2002–12 time periods at the site. All three 
trend periods were determined to have significant decreasing 
trends in both flow-normalized concentration and flow-
normalized load.

Total phosphorus at site 02089500, the Neuse River at 
Kinston, North Carolina, is a good example of how trend 
results can be different for concentrations than for loads, and 
how trend results can be different depending on the trend 
period. Total phosphorus concentrations and loads follow a 
similar pattern to each other but do not behave consistently 
over time (figs. 44A and 44B). Mean annual total phosphorus 
concentrations and flow-normalized total phosphorus 
concentrations decrease during the beginning of the 1982–
2012 trend period and then increase towards the end of the 
1982–2012 trend period (fig. 44A). The trend results indicate a 
significant decreasing trend in total phosphorus concentrations 
for 1982–2012 and a significant increasing trend in total 
phosphorus concentration for 2002–12; there is no significant 
trend in total phosphorus concentration for 1992–2012. 
Similar to the concentrations, estimates of annual total 
phosphorus load and flow-normalized total phosphorus load 
decrease during the beginning of the 1982–2012 trend period 
and then increase slightly towards the end of the 1982–2012 
trend period (fig. 44B). The trend results indicate a significant 
decreasing trend in total phosphorus load for 1982–2012; there 
is no significant trend in total phosphorus loads for 1992–2012 
or 2002–12. 

A discussion of the SKT and the results of the comparison 
of trend results from the SKT and WRTDS are described in 
appendix 8. Water-quality and streamflow datasets used in the 
Seasonal Kendall trend tests and complete results for the SKT 
are in Mills and others (2017).
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Figure 43.  The Weighted Regressions on Time, Discharge, 
and Season (WRTDS) estimates of A, annual mean sulfate 
concentrations and flow-normalized sulfate concentrations; and 
B, annual sulfate loads and flow-normalized sulfate loads for site 
01377000 Hackensack River at Rivervale, New Jersey. 
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Figure 44.  The Weighted Regressions on Time, Discharge, 
and Season (WRTDS) estimates of A, annual mean total 
phosphorus concentrations and flow-normalized total phosphorus 
concentrations; and B, annual total phosphorus loads and flow-
normalized total phosphorus loads for site 02089500 Neuse River 
at Kinston, North Carolina. 

Pesticide Results

A summary of trend results for all pesticide parameters 
and trend periods for both flow-adjusted concentration and 
load evaluated using the SEAWAVE–Q model is presented 
in appendix 7, table 7–3. Final pesticide trend sites evaluated 
using the SEAWAVE–Q model are shown in figure 45 (the 
pesticides for which trends are reported vary from site to site, 
depending on the degree of data censoring). Complete trend 
results for pesticides, including annual concentrations and 
load estimates, are reported in Ryberg and others (2017). The 
trends in pesticide loads are the same as the trends in pesticide 
concentrations, under an assumption that there are no trends in 
streamflow (see “Pesticide Trend Method” section). 

To illustrate the SEAWAVE–Q model, trend analysis 
results for concentrations of one pesticide, atrazine (USGS 
parameter code 39632) at a single site during the 2002–12 
analysis period, site 03303280 Ohio River at Cannelton 
Dam at Cannelton, Indiana, are shown in figure 46. Atrazine 
is a preemergent or postemergent herbicide used to control 
broadleaf weeds and some grassy weeds (U.S. Environmental 
Protection Agency, 2006) and is one of the most widely 
used agricultural pesticides in the United States, with use 
declining in the Ohio River Basin upstream from this site 
(a significant trend of -2.1 percent per year in the period 
2001–10; Ryberg and others, 2014). The SEAWAVE–Q results 
show a statistically significant downward trend for atrazine 
concentration (-8.6 percent per year), which agrees well with 
atrazine concentration trend analysis at this same site for the 
period 2001–10 in a previous USGS study (a significant trend 
of -6.7 percent per year; Ryberg and others, 2014).

The measured and fitted (estimated) atrazine 
concentrations (fig. 46) show patterns of seasonality (the 
within-year oscillations correspond to seasonal applications 
of atrazine that peak in summer), trend (a general decline), 
and flow-related variability (the seasonality and trend terms 
are smooth, whereas the flow-related variability causes the 
smaller variations in the fitted concentrations, as well as 
contributing to the overall trend). More in-depth examples of 
how streamflow anomalies and the fitted seasonal wave interact 
in SEAWAVE–Q models are provided for three pesticides in 
Ryberg and others (2010). Visualizations of the seasonal wave 
term are provided in appendix 3 of Ryberg and Vecchia (2013). 

Ecology Results

Trend results for all three assemblages (fish, invertebrates, 
and diatom) for both trend periods are reported in tabular 
format in a single table (Zuellig and Riskin, 2017) with site 
locations illustrated in figure 47. A summary of the results are 
reported in appendix 7, table 7–4, where trends are indicated 
by “true” or “false” for each site, trend-period, and ecological 
endpoint combination for both adjusted and unadjusted data. 
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Figure 45.  Final pesticide trend sites evaluated for at least one trend period.
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Figure 46.  Measured and fitted atrazine concentration and trend line, site 03303280 Ohio River at Cannelton Dam at Cannelton, 
Indiana.

A trend result of true signifies the p-value was ≤ the critical 
value of 0.1, indicating the null-hypothesis (no trend in the 
data) was rejected. A false result indicates the null-hypothesis 
was not rejected, signifying no trend in the data (p-value > 
0.1). Likelihood coefficients could not be calculated for the 
ecology trends determined using the Kendall-tau test (as was 
done for the nutrient, sediment, major ion, salinity and carbon 
trends determined using WRTDS) because of the limitations 
of the ecology data. Therefore, caution should be used when 
interpreting p-values near the critical significance threshold 
(p ≤ 0.1) as there is likely little biological difference between 
trends with p-values just above and below any threshold. 
Complete results for diatom and fish endpoints at a single 
site (07053250, Yocum Creek near Oak Grove, Arkansas) are 
reported in appendix 7, table 7–5, with two examples (diatom 
endpoints 1993–2012 and fish endpoints 2002–2012) briefly 
described below.

Diatom Trend Result Example
At site 07053250 Yocum Creek near Oak Grove 

Arkansas, diatom taxa preferring chloride concentrations 
below 15 mg/L (DiaLowCl) decreased over the 1993–2012 
trend period (pO = 0.025, Per.ChangeO ~ -30, appendix 7, 
table 7–5). After endpoints were adjusted for antecedent 
flow, the DiaLowCl result remained similar (pR = 0.004, Per.
ChangeR ~ -29); however, taxa tolerant to high total nitrogen 
(DiaHighTN, pR = 0.049, Per.ChangeR ~ 63) and phosphorus 
(DiaHighTP, pR = 0.063, Per.ChangeR ~ 69) concentrations, 
as well as low dissolved oxygen (DiaLowDO, pR = 0.006, Per.
ChangeR ~ 223) increased over the trend period. In this case, 
antecedent streamflow conditions may have been masking 
the response of taxa tolerant to high nutrients (>3 mg/L total 
nitrogen and > 10 µg/L total phosphorus) and low dissolved 
oxygen (down to 30 percent saturation).
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Figure 47.  Final ecology trend sites evaluated for at least one trend period.
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Fish Trend Result Example

At site 07053250 Yocum Creek near Oak Grove, 
Arkansas, fish diversity (FishDiv) decreased (pO = 0.009, 
Per.ChangeO ~ -25) along with community tolerance to 
ammonia (FishAmm, pO = 0.013, Per.ChangeO ~ -13) and 
low dissolved oxygen (FishDO, pO = 0.035, Per.ChangeO ~ 
-10) (appendix 7, table 7–5) decreased over the trend period 
2002–12. After endpoints were adjusted for antecedent flow, 
trends in tolerance to ammonia and low dissolved oxygen 
were no longer detectable at the critical threshold (FishAmm, 
pR = 0.536; FishDO, pR = 0.266). In this case, antecedent 
streamflow conditions covaried with trends in community 
tolerance to ammonia and low dissolved oxygen. Results 
in decreasing fish diversity were similar, but the influence 
of antecedent streamflow was not as clear. For example, 
after adjustment, the resulting p value was very near the 
threshold (FishDiv, pR = 0.108). Technically, this indicates 
the decreasing trend in fish diversity after adjustment 
was undetectable at the critical value. Unfortunately, the 
acceptance of the null hypothesis (no trend in the data) 
under these circumstances is an obvious artifact of the 
threshold value itself and reflective of the limitations of 
hypothesis testing.

Summary
One of the major goals of the National Water-Quality 

Assessment (NAWQA) Project is to determine how water 
quality changes over time. To support that goal, long-term 
consistent and comparable monitoring has been conducted 
on rivers and streams throughout the Nation. Other U.S. 
Geological Survey (USGS) projects, as well as projects 
conducted by many other Federal, State, Tribal, regional, 
and local agencies have collected long-term water-quality 
data to support their own assessments of changing water-
quality conditions. For the first time, in an effort meant to 
be as inclusive as possible, data from multiple sources have 
been aggregated, screened, standardized, and used to support 
a comprehensive assessment of surface-water-quality trends 
in the United States. Collectively, these trend results will be 
used to provide insight into how natural variation and human 
activities have contributed to water-quality changes over time 
in the Nation’s rivers and streams.

This report documents (1) the data compilation and 
processing steps used to identify stream and river sites 
throughout the Nation with data suitable for trend analysis, 
(2) the statistical methods used to determine trends, (3) 
considerations for water-quality data and streamflow data 
when modeling trends, (4) sensitivity analyses for selecting 
data and interpreting trend results with the Weighted 
Regressions on Time, Discharge, and Season method, and (5) 
a brief summary of the trend results presented as the presence 
or absence of a significant trend at each site for each parameter 

and trend period for which data are available. The scope of 
this study includes trends in water-quality concentrations and 
loads (nutrients, sediment, major ions, salinity, and carbon), 
pesticide concentrations and loads, and metrics for biological 
communities (fish, invertebrates, and algae) for four time 
periods: 1972–2012, 1982–2012, 1992–2012, and 2002–12. 
This report documents the methods used to determine trends 
in water quality and ecology in detail because they are vital 
to ensuring the quality and interpretability of the results. The 
final trend results are presented, along with an example of 
how to interpret the results from each trend model; an overall 
or in-depth interpretation of the trend results, such as causal 
analysis, is not included in this report. 

Water-quality monitoring and aquatic ecology data 
(invertebrates) were compiled from multiple sources for this 
study and include ambient monitoring data that were readily 
accessible from Federal, State, Tribal, regional, and local 
government agencies and nongovernmental organizations. 
The primary sources of data were the USGS National Water 
Information System (NWIS) database; the USGS Aquatic 
Bioassessment (BioData) database, the U.S. Environmental 
Protection Agency STOrage and RETrieval Data Warehouse, 
Water Quality Exchange (STORET) database, and additional 
repositories for monitoring data that are not included in 
STORET. More than 185 million water-quality and ecological 
records from approximately 480,000 sites and over 600 
agencies were initially evaluated for this trend study. 

For many rivers, concentration and streamflow were 
correlated, and properly accounting for this relation during 
trend analyses allowed for a better determination of general 
changes in water quality over time. This was important for 
parameters that are strongly related to streamflow and sites 
where streamflow is highly variable; furthermore, if trends 
in load were of interest, streamflow data were essential to 
calculate parameter load (mass per time), which is the product 
of water-quality concentration (a mass per volume) and an 
associated streamflow rate (volume per time). Streamflow 
data were used in this analyses as an explanatory variable in 
each of three trend methods and to calculate water-quality 
loads. The USGS streamflow gages (henceforth, referred to as 
“streamgages”) were the primary source of streamflow data. 

Because streamflow data are required for water-quality, 
pesticide, and ecology trend analysis, sites with water-
quality, pesticide, and (or) ecology data had to be assessed to 
determine whether there was a suitable nearby streamgage. 
Streamgage matching was performed that paired each water-
quality site or group of sites with a streamgage. The goal 
was to identify the nearest streamgage having a drainage 
area within 10 percent of the site drainage area having a 
streamflow record that encompassed as much of the water-
quality period of record as possible and that did not have 
intervening influences between the two locations that would 
cause streamflow to be substantially different. In many cases, 
a water-quality or pesticide site could not be matched to a 
streamgage, and the water-quality site was dropped from 
further consideration. 
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The initial pool of sites for this study included over 
half a million sites. Because of the large number of sites, it 
was not possible to tailor data-processing choices to each 
individual site; instead, data-processing choices were made 
at a high level and applied consistently to all sites. This 
approach avoided introducing differences in methodology that 
could invalidate comparisons of the final trend results across 
nationwide sites and parameters. A single set of decisions 
appropriate for all sites was not possible because of the wide 
variation in data characteristics and quality across sites. In 
the end, some sites that could have been salvaged by making 
individual site-based data processing and screening choices 
were excluded from the study. 

The high-level decisions made in this study provided a 
robust approach to data processing and screening when the 
goal was to compare trends regionally and nationally at a large 
number of sites and for a large number of parameters. When 
the goal is to compare trends at a smaller subset of sites and 
for a smaller number of parameters, different choices could 
be possible—either because consistency can be achieved 
in a different manner or because it is reasonable in scope to 
tailor data-processing choices to each site. In these situations, 
trend results that were slightly different in magnitude and (or) 
uncertainty than those from this study could be obtained for 
the same site, parameter, and trend period, but any differences 
should be minor when the underlying data described the full 
range of conditions at a site and when similar and appropriate 
trend methods were used. 

Similar water-quality parameters were compared to 
determine whether they could be combined for trend analysis. 
The goals of combining parameters were to (1) increase 
the number of sites for which trends can be calculated, 
and (2) increase the length of time over which trends 
can be calculated. Generally, the filtered fraction and the 
unfiltered or unknown fraction of the same parameter were 
evaluated for combination, for example filtered ammonia and 
unfiltered ammonia; however, some comparisons were made 
between different parameters, for example, filtered nitrite 
plus nitrate and filtered nitrate. When the analysis did not 
indicate substantial bias among parameter groups, the data 
were combined.

Different models were used to determine trends in water-
quality, pesticide, and ecology parameters. The Weighted 
Regressions on Time, Discharge, and Season (WRTDS) 
method was used to determine trends in flow-normalized 
concentration and load for nutrients, sediment, major ions, 
salinity, and carbon. For comparison, all sites and parameters 
analyzed for trends using WRTDS were also analyzed for 
trends using the Seasonal Kendall method. The seasonal wave 
(SEAWAVE–Q) model was selected as the statistical tool for 
analyzing trends in pesticide concentrations for this study. 
The Kendall-tau test for trends was used to detect monotonic 
trends in the unadjusted ecological endpoints before and after 
adjustment for the effects of climatic variability. 

Most studies that examine changes in water quality 
over time are challenged by common issues pertaining to 

data density, sample representativeness, and the stability of 
estimates as new data are added to the calibration record. A 
successful study of water-quality trends, one in which the 
identified trend holds up to scrutiny, requires researchers to 
make sound decisions to appropriately address and resolve the 
aforementioned issues and any others that arise because of the 
data or method used. Several sensitivity tests are presented 
to demonstrate how WRTDS estimates were affected by the 
frequency of storm-sample collection, the frequency of sample 
collection throughout the year, the precision (rounding) of 
water-quality data, and the incremental addition of new data to 
the calibration dataset.

Water-quality samples collected during high-flow periods 
were important for an unbiased WRTDS calibration but 
usually required extra effort because of the random nature of 
hydrologic events. The relation between concentration and 
streamflow is one of the primary relations modeled in WRTDS 
and is not always well defined when sites lack a sufficient 
number of high-flow samples. The criteria for the minimum 
number of high-flow samples were determined after evaluating 
the results from downsampled calibration data. It was decided 
that sites would be required to have at least 10 percent high-
flow samples in all trend decades to be modeled, and at least 
14 percent high-flow samples in half of the trend decades 
to be modeled. 

The original guidance for WRTDS recommended its use 
at sites with long-term (at least 20 years) and dense (at least 
200 samples) water-quality datasets and with continuous daily 
streamflow for the entire water-quality period of record. To 
maximize the use of the compiled multiagency data, this study 
required a sampling frequency of at least four samples per year 
for the first 2 years and the last 2 years of the trend period, as 
well as at least four samples per year in 70 percent of the years 
in the trend period. 

The precision of the water-quality data used in this study 
varied by site, constituent, and analyzing agency because 
of the analytical methods used for sample determination, 
laboratory-specific detection limits, and reporting conventions. 
Additionally, the precision of a specific constituent, at a 
single site, analyzed by a single agency may have varied over 
time because of upgrades in analytical equipment, updates 
to detection limits, and changes in reporting conventions. To 
illustrate the influence of rounding on WRTDS estimates, 
sensitivity tests that applied various types of rounding were 
completed at two sites. Based on the results from these two 
sites, when rounding appears to minimally affect WRTDS 
estimates, no attempt was made to change the precision of the 
original data.

The WRTDS model and all regression-based water-
quality models are sensitive to the incremental incorporation 
of new data. Estimates of concentration and load are typically 
updated periodically (for example, annually or semidecadally) 
as new water-quality data become available. Recalibration 
of regression-based models with updated data can lead 
to changes in the model coefficients, historical estimates, 
and model diagnostics. Because previous estimates of 
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concentration and load might change with updated calibration 
data, trends estimated between two past points in time might 
also change. These changes were explored using successive 
calibrations, sets of model estimates (vectors of annual 
estimates of concentration and load) where new data were 
incrementally added to the end of the record, and models were 
recalibrated. The successive calibrations indicated changes 
occurring with the addition of new calibration data are most 
pronounced around an emerging inflection point. 

For trend studies, it is important to identify major 
changes in laboratory methods or procedures that may induce 
a bias in water-quality determinations and possibly produce 
an artificial step trend in the data. Major changes in laboratory 
methods and the resulting analytical values at the National 
Water Quality Laboratory (NWQL) have been documented in 
a variety of resources and are compiled herein. 

To evaluate the potential for laboratory changes to 
affect environmental concentrations, the presence of step 
trends in concentrations of selected water-quality data were 
evaluated separately for data from the USGS and data from 
all other agencies using 4-year moving windows beginning 
in 1974. For each 4-year moving window, a flow-related 
variability in concentrations was removed, and the resulting 
flow-normalized concentrations were analyzed for step trends 
across groups of sites in major geographic regions. The results 
for USGS data were compared to results for data from all other 
agencies indicated that, for the vast majority of parameters and 
years, regional trend patterns generally were consistent among 
sites with USGS data and sites with data from other agencies, 
indicating that there were few instances where anomalous step 
trends were induced by method changes at USGS laboratories. 

One of the largest challenges in estimating trends was 
deciphering the proportion of variability in concentration, 
load, or ecological metrics that arose from variability in 
streamflow versus the proportion that was due to other changes 
and processes in the watershed or channel. Many water-quality 
parameters and ecological metrics were related to streamflow, 
and changes in streamflow make it challenging to evaluate 
progress or deterioration in response to human activities if the 
influence of streamflow was not considered. Strong gradual 
trends in streamflow caused a nuanced interpretation of the 
flow-normalized estimates which no longer describe the 
in-stream water-quality conditions but instead suggest changes 
to the input of the parameter to the stream. Abrupt changes 
in streamflow also were problematic for calibration and flow 
normalization in WRTDS. Sites with significant gradual 
trends or step trends in streamflow were assessed using the 
Mann-Kendall test and the Pettitte test. The WRTDS trend 
models were not excluded based solely on the results of these 
streamflow trends but were listed in an associated data release.

In total, nearly 12,000 water-quality, pesticide, and 
ecology trends were evaluated in this study; there were 
11,729 combinations of sites, parameters, and trend periods. 
Trend results for each of the trend models are summarized 
here. Complete trend results are available in the associated 
data releases. 
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