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ABSTRACT 

 

Urbanization over the last century has degraded our natural water resources by increasing storm-

water runoff, reducing nutrient retention, and creating poor ecosystem health downstream. The 

loss of tree canopy and expansion of impervious area and storm sewer systems have significantly 

decreased infiltration and evapotranspiration, increased stream-flow velocities, and increased 

flood risk.  These problems have brought increasing attention to catchment-wide implementation 

of green infrastructure (e.g., decentralized green storm water management practices such as 

bioswales, rain gardens, permeable pavements, tree box filters, cisterns, urban wetlands, urban 

forests, stream buffers, and green roofs) to replace or supplement conventional storm water 

management practices and create more sustainable urban water systems. Current green 

infrastructure (GI) practice aims at mitigating the negative effects of urbanization by restoring 

pre-development hydrology and ultimately addressing water quality issues at an urban catchment 

scale. The benefits of green infrastructure extend well beyond local storm water management, as 

urban green spaces are also major contributors to human health. Considerable research in the 

psychological sciences have shown significant human health benefits from appropriately 

designed green spaces, yet impacts on human wellbeing have not yet been formally considered in 

GI design frameworks.  This research develops a novel computational green infrastructure (GI) 

design framework that integrates storm water management requirements with criteria for human 

wellbeing. A supervised machine learning model is created to identify specific patterns in urban 

green spaces that promote human wellbeing; the model is linked to RHESSYS hydrological 

model to evaluate GI designs in terms of both water resource and human health benefits. An 

application of the models to Dead Run Watershed in Baltimore showed that image mining 
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methods were able to capture key elements of human preferences that could improve tree-based 

GI design. Hydrologic benefits associated with these features were substantial, indicating that 

increased urban tree coverage and a more integrated GI design approach can significantly 

increase both human and hydrologic benefits.    
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Chapter 1 

Introduction & Motivation 
 

The rapid growth of urbanization interferes with natural water and nutrient cycling by increasing 

impervious surfaces, which in turn increases flashiness of urban drainage systems and reduces 

water quality, causing human health and ecosystem problems downstream (NRC, 2008; Wendel 

et al., 2011). This problem has increased interest in using green infrastructure (bioswales, rain 

gardens, permeable pavements, tree box filter, cisterns, urban wetlands, green roofs, etc.) as a 

best management practice for capturing storm-water and thereby filtering pollutants and slowing 

flows (Dietz, 2007). Poff et al. (1997) suggested that implementation of these practices at the 

watershed scale should restore the riverine ecosystem along with addressing water quality issues. 

Furthermore, Roy et al. (2008) considered watershed-wide implementation of these approaches 

as a prerequisite for sustainable urban water systems.  

Currently, green infrastructure design guidelines provide site-specific (patch) criteria with 

only qualitative discussion of catchment-scale impacts of GI installations (e.g, CalTrans (2010); 

City of Portland (2008); Harper and Baker (2007); MDE (2009); NCDWQ (2007). Catchment-

scale lumped-parameter stormwater models (e.g., MARC (2008); Vassilios et al. (1997); and 

tools such as HSPF, SWMM and HEC–HMS) do not represent site-specific hydrology or GI 

processes. In these catchment-scale models, both traditional (“grey”) and green infrastructure 

have typically been modeled as “edge-of-field” or “in-line” filters and sinks for storm-water 

runoff received from source catchment areas. Attenuation of storm-water volumes and pollutants 

are often included as fixed reduction percentages or first-order decay reactions based on limited 

input and output water quality measurements (e.g., Lee et al. (2012), in the SUSTAIN modeling 

framework, and Wong et al. (2001), in the MUSIC framework).  
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Research over the past decade as part of the Baltimore Ecosystem Study suggests that 

significant carbon sequestration and nitrogen retention can occur in a range of urban ecosystem 

features, including lawns, gardens, and stormwater detention structures, but that these processes 

are sensitive to specific characteristics of the integrated drainage system, including contributing 

areas, flow regimes, soils, and structure design (e.g. Raciti et al. (2011a,b); Bettez and Groffman 

(2012)).  Living components of green infrastructure will grow and adjust to prevailing water, 

climate, and nutrient conditions, and there may be a long, transient development of ecosystem 

cycling and retention capacity following development.  Design of sustainable green 

infrastructure as either edge-of-field or at-source treatment should incorporate transient 

development as the ecosystem develops in response to local climate, soil, and drainage position 

(e.g. location within a flow field).  It is critical that GI modeling extend to encompass the full 

catchment as a continuum beyond the discrete GI sites, including runoff source areas in addition 

to edge-of-field or in-line treatment systems. 

Furthermore, the benefits of green infrastructure extend well beyond local storm water 

control, as urban green spaces (e.g., lakes, parks, and community gardens) are also major 

contributors both to the quality of the urban ecosystem and to human health (Morris (2003); 

NRC (2008); and Wendel et al. (2011)). Good quality green spaces encourage people to walk, 

run, cycle, play and engage in many other recreational activities that provide opportunities for 

healthy physical activity and reduce mental stress (Douglas, 2004). According to Ulrich (1984), 

outdoor activities in such environments allow our sensory apparatus to relax and recover from 

stress.  Green spaces also improve air quality, reduce noise pollution, filter out air-borne dust and 

contaminants, and can partially offset greenhouse gas emissions (Dunn (2010); Pataki et al. 
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(2011); Pincetl (2007)).  A wide range of water and nutrient capture activity by natural and 

quasi-natural green environments contribute to human wellbeing.  

The human health benefits (co-benefits) of urban green spaces have been well studied 

and documented in physiological as well as psychological sciences (Kuo & Sullivan (2001a)). 

Forty years of research has established the powerful and consistent effects of the presence of 

natural elements in increasing human preferences for urban landscapes (Kaplan & Kaplan 

(1989)). These high-preference elements, in turn, are now associated with a variety of health 

benefits including faster recover from stressful experiences, reduced physiological symptoms of 

stress (Thompson, et al. (2012); Chang & Chen (2005)), and increased life expectancy after 

controlling for a host of features associated with mortality (Mitchell & Popham (2008); Takano, 

et al. (2002)). 

Despite all these benefits, green infrastructure (GI) design has not yet considered criteria 

for human wellbeing, at least not in any formal design structure. Along with the storm water 

management requirements there is a need to quantify the significance of candidate GI designs for 

human wellbeing. In this research we propose a new design framework that considers both 

human benefits of GI. To aid in rapid initial evaluation of potential GI designs, we have 

developed a human preference model that predicts human benefits of GI using supervised 

machine learning algorithms and computer vision techniques. The model is validated using data 

from a study in Galesburg, IL. The resulting algorithm is then coupled with a hydrologic model 

called RHESSYS to estimate human benefits for a GI design case study in Baltimore, MD. To 

our best knowledge this is the first study that quantifies the significance of urban green 

infrastructure design for both human wellbeing and hydrologic benefits.   

 



 

4 
 

Chapter 2 

Methodology 
 

This section presents the fundamental concepts and technologies used to create a GI design 

framework that integrates human preferences for green spaces, which are correlated with human 

health benefits, and hydrologic benefits.  

An overview of the green infrastructure design framework is given in Figure 1.  In order 

to predict GI human benefits, an image-based machine learning approach (presented in Section 

2.1) is used to visually identify certain landscape features in design images that humans prefer, 

and are therefore linked with improved human health (Sullivan et.al, 2004), and provide a 

quantitative ranking of the design. To link these human preference criteria with storm water 

requirements, RHESSYS (Tague and Band, 2004) is used to predict hydrologic benefits of the 

design’s landscape features, as described in Section 2.2.  

 
Figure 1: Green infrastructure design framework. 

 



 

5 
 

2.1  An image-based machine learning model to predict human preference 
ratings for GI designs:  
 

Ongoing and previous research has shown that preferences of stakeholders can be predicted 

using digital images which visually represent potential GI designs (Sullivan, Anderson, & 

Lovell, 2004). For example, Figure 2 shows GI design images from Galesburg, Illinois, 

described in more detail in Section 3, and their human preference rankings. In order to use these 

types of data for predicting human health benefits of GI designs, an image-based supervised 

machine learning approach is developed, shown in Figure 3. The approach automates the 

prediction of human preferences from GI design images by identifying (extracting) landscape 

features that correlate with high human preferences (Kaplan & Kaplan, 1989) using computer 

vision techniques (see Figure 2). A supervised machine learning model is then trained to predict 

a human preference rating for the image based on the extracted features. Section 2.1.1 gives the 

features that were selected to represent the link between GI designs and human preferences, as 

well as an overview of the methods used to extract those features. Sections 2.1.2 through 2.1.5 

provide more details on each feature extraction method. Finally, Section 2.1.6 presents the 

supervised machine learning model used to predict human preferences from these extracted 

image features. 

 
(a) A low preference setting           (b)  A high preference setting 

Figure 2: Sample GI design settings in Galeburg, IL (Sullivan, et. al). 
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Figure 3: Stages in the image-based human preference model for GI design infrastructure. 

 

2.1.1. Feature Extraction:  
 

Figure 4 shows a typical green space image, marked with examples of the types of features that 
can be extracted and correlated with human preference rankings. 

 
Figure 4: Typical features that can be extracted from GI design images. 

 

To identify which image features to include in the model, Table 1 maps available image 

segmentation algorithms to the human preference matrix developed by Kaplan and Kaplan 

(1989) for urban green spaces, which gives GI characteristics that are most linked to human 

wellbeing. The column on the left gives landscape features that attract people and engage them 
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longer by promoting human understanding, while the column on the right are features that 

encourage human exploration of the landscape. Entries in the table give the landscape features 

from Kaplan and Kaplan (1989) that most correlate with human wellbeing and image 

segmentation algorithms that can extract these types of features from design images. These 

features and algorithms are defined in more detail below. 

Table 1: Preference Matrix 

   Understanding                                           Exploration 
Coherence 
Color histogram identifies green shapes and 
their layouts. 

Complexity 
GIST descriptor identifies openness. 

Legibility 
EOH identifies distinctive shapes of trees 
and pathways. 

Mystery 
Spatial histogram identifies spatial locations 
of features (e.g., paths partially hidden by 
trees) and GIST descriptor identifies their 
openness. 

 

• Coherence: How clear and orderly the green setting appears. 

• Complexity: The richness and variety in visual components of the setting that encourage 

exploration. 

• Legibility: The distinctiveness of the setting. 

• Mystery: The extent to which features are partially hidden from view (e.g., via curving 

pathways), which encourages exploration.  

The feature extraction algorithms that are used to identify these characteristics in GI 

design images are listed as follows, and described in more detail in Sections 2.1.2 through 2.1.5: 

(1) color histogram identifies color features in the GI image (Vailaya et al., 1998); (2) edge 

orientation histogram (EOH) identifies object shapes and boundaries, such as trees and paths 

(Dalal et al., 2007; (3) spatial histogram extracts the spatial location of objects in the image 

(Birchfield and Rangarajan, 2005); and (4) GIST descriptor identifies low-dimensional features 
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of the scene representing openness, closeness, naturalness, and roughness in GI images (Oliva 

and Torralba , 2001). 

2.1.2 Color Histogram: 
 

Color histograms are used for identifying color features for image classification (Anami, et.al, 

2010). The color green is an important feature in GI design, therefore color-based segmentation 

algorithm (Wu, et.al., 2007) is implemented to compute the amount of green color intensity in an 

image. The key concept of color-based segmentation is to separate an object of a particular color 

in an image from other objects. The separation of objects is performed using unsupervised 

clustering analysis, which is the process of finding subsets of data points with maximum 

similarity (Hartigan, 1975). In this research, k-means clustering (McQueen, 1967) is 

implemented as a color-based segmentation algorithm using Matlab. The first step involves 

converting an RGB (Red, Blue, and Green added together in a color space to produce a broad 

array of colors) input image to an L*a*b* color space. A color space is an abstract mathematical 

model that describes the way colors can be represented as tuples of numbers.  The L*a*b* color 

space consists of a luminosity layer ‘L*’, chromaticity layer ‘a*’, which decides where color 

falls along red-green axes, and chromaticity layer ‘b*, which indicates where color falls along 

blue-yellow axes. The L*a*b* color space is used to quantify visual differences. Next, the 

objects in the L*a*b* image are clustered using K-means clustering, labeled with a unique 

cluster-index, and separated based on the value of k (number of specified cluster).  
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Figure 5: Color-based segmentation using k-means clustering. 

Figure 5 shows a sample image of a color-based segmentation result from k-means clustering. 

For k=2 clusters, the algorithm separates the sky from the landscape features, including 

pavements and green features. This segmented image is then used to compute the color 

histogram that gives the color distribution of pixels in the image (Anami, et.al, 2010), as shown 

in Figure 6. Since color is not uniform in the image, the segmented images from k-means 

clustering are first converted into HSV color space. In HSV color space, H is the hue which 

describes the actual wavelength of color; it makes the green color distinguishable. After the 

image is converted to HSV color space, the color histogram is computed by counting the number 

of pixels of each color as shown in Figure 6; each bin represents one color intensity.  

 

 

Figure 6: Color histogram. 
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2.1.3 Edge Orientation Histogram (EOH): 
 

The edge orientation histogram is used to extract the distribution of edges of objects in an image 

(Dalal et al., (2005)). The distribution of edges is a good image feature to help with finding the 

distinctive shapes of objects present in a design image (e.g., the shapes of trees shown in Figure 

3), which are needed to determine the legibility feature in Table 1 that affects human 

understanding of the scene. The first step in computing the EOH is to identify the edges in each 

input image. Canny edge detector is an edge detection operator that detects a wide range of edges 

in images. It takes a gray-scale image (where colors are converted to shades of gray) as input, 

and produces as output an image showing the positions of tracked pixel intensity discontinuities. 

Figure 6 shows the edge segmented image using canny edge operator on the gray-scale image of 

the landscape shown in Figure 4. The edges of the resulting image are then categorized into five 

classes that identify their direction: vertical, horizontal, 450-diagonal, 1350-diagonal, and 

isotropic. The classes are chosen based on the steepness of slope at each pixel (Anami et. al, 

(2010)).  

 

 
Figure 7: Shape-based segmentation using Canny Edge detector. 
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From the edge-based segmented image in Figure 7, the edge-oriented histogram is computed and 

plotted as shown in Figure 8. The edge-oriented histogram represents the count of the edge 

gradient (slope of each edge in image) in radians computed for an input image. These EOH 

features are important to represent the shapes of objects in GI designs, especially the shapes of 

trees.  

 
Figure 8: Edge Orientation Histogram. 

 

2.1.4  Spatial Histogram: 
 

Spatial histograms are higher order histograms that capture global spatial information by 

computing the frequency of locations of labeled pixels across all images (Birchfield and 

Rangarajan, (2005)). Every pixel in an image is associated with a label based on its similarity in 

characteristics such as color intensity, texture, etc. In this algorithm, color intensity has been 

used to determine the labels of each pixel across the image set. These label pixels are grouped 

together based on the similarity of intensity and their location is specified as the centroid of their 

cluster. This coordinate value is used to estimate the spatial information of similarly-labeled 

pixels in an image. The spatial histogram shown in Figure 9 (from the same input image as 

Figure 4) shows the frequency of bins that represent the mean spatial location of every labeled 
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pixel in the image. In this manner, spatial histogram is capable of summarizing spatial 

information that is not represented with color histogram or edge-oriented histogram.  

 

Figure 9: Spatial histogram for the image in Figure 4. 

 

2.1.5 GIST Descriptor Features (Antonio, et al. 2001): 
 

The previous two image features identify specific objects from the images. Antonio et al. (2001) 

proposed a technique to estimate the structure or shape of a scene using spatial properties of the 

scene, called GIST descriptors. The spatial properties of a scene are the composite set of 

boundaries in an environment, such as walls, sections, ground, elevation, and slant of the 

surfaces that define the shape of the space. The GIST descriptor identifies the dominant spatial 

structure of a scene (e.g., degree of naturalness, degree of openness, degree of roughness, degree 

of expansion). The mathematical model of the GIST descriptor implements principal component 

analysis for dimensional reduction of an input image (Wold, et. al., 1987). In this work, the GI 

input images are then modeled using the GIST descriptor algorithm called LMgist in Matlab. 

The GIST descriptors are computed by implementing the discrete Fourier transform (DFT) of an 

input image, which decomposes the image into its sine and cosine components. The output of the 

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bins

Fr
eq

ue
nc

y 
(%

)
Spatial histogram



 

13 
 

transformation represents the image in frequency domain, where each point represents a 

particular frequency contained by the pixel (Morgan, et al., (1991)). The DFT contains an 

amplitude function of frequency variables, which represents the energy spectrum or radiation in 

the image and provides information on the length and width of the contours that compose the 

scene.  

Figure 10 shows the GIST descriptor for a sample input green space image. The results 

show the local energy spectrum, which measures the quantity of radiation passing through or 

emitted from the surface of an object, for the objects in the image, grouped spatially in a 4x4 

matrix on the right side. Dark regions in the gist descriptor matrix (e.g., the upper right and lower 

left sub-images in Figure 10) represent the openness in the scenic image. Each sub-image of the 

4x4 matrix corresponds to the amount of radiation (with multiple wavelengths) emitted or passed 

through objects placed in the corresponding spatial location. Objects such as the tree in the 

middle of the input image on the left in Figure 10 emits higher radiation and thus has more 

energy spectrum captured by the GIST descriptors in the corresponding sub-image. This spatial 

distribution of local energy spectrum helps in determining the holistic representation of a scene, 

such as the degree of openness/closeness that affect the complexity factor of the landscape as 

given in Table 1. 

 
Figure 10: GIST Descriptor results for a sample image. 
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2.1.6 Machine Learning Model: 
 

Once the GI design image features are extracted using the methods described above, a supervised 

machine learning approach is used to predict human preferences for each design. Supervised 

machine learning algorithms are used to learn or approximate some unknown or partially known 

function (y=f(x)) from a set of training data consisting of instances of the function’s inputs and 

outputs (x, y). The output (y) can be discrete classes or labels – called a classification problem -- 

or can be continuous values -- called a regression problem. Once the model learns from the 

labeled training data, it is used to predict the outcome for any valid input. There are number of 

supervised machine learning algorithms -- see reviews by Mitchell, (1997) and Duda et.al, 

(2001). Predicting human preferences is a multi-class classification problem, where the training 

set consists of a group of images with human preference ratings on a scale of 1-5. The higher the 

rating, the more preferable is the GI design, as shown in the Figure 3. 

In this research, the adaptive boosting algorithm is used to predict human preferences. 

Adaptive boosting (AdaBoost) is an ensemble learning algorithm, which combines a weak 

classifier such as decision trees or k-nearest neighbors (KNN) to output a strong classifier 

(Freund and Schapire, 1999). AdaBoost gives high accuracy and prevents over-fitting of 

parameters to the training dataset by using an iterative learning model, which improves accuracy 

by learning from mistakes made in an earlier training step. The algorithm continues iterating 

until its misclassification error falls below a user-specified threshold value. For this application, 

both decision trees and KNN were tested as the weak classifiers and decision trees performed 

best and were used in the results presented below.     
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2.2  Evaluating the hydrologic benefits of GI design: 
 

In order to evaluate the hydrologic benefits of candidate GI designs, RHESSYS hydrologic 

model (Tague and Band, 2004) is used. RHESSYS is designed to simulate integrated water, 

carbon, and nutrient cycling and transport over spatially variable terrain at small to medium 

scales (i.e. from 1st to 3rd order watersheds). Its spatially distributed framework enables the 

modeling of spatiotemporal interactions between different eco-hydrological processes from patch 

to watershed scales (Hwang, et.al., 2012).   

Figure 11 gives an overview of the steps involved in preparing the required input for GI 

simulation using RHESSYS and integrating it with the human preference model for social 

ranking. Google street view images are first extracted from the Google Maps application 

programming interface (API) (http://maps.google.com) for the neighborhood where GI 

design is planned. The coordinates (latitude/longitude) are identified using Google Maps for the 

front yard of every house in the neighborhood where GI installation is under consideration. 

These coordinates are used to generate patch identifications (ids) that are used as inputs for GI 

parameters in RHESSYS. Patch ids are unique numbers associated with particular ecosystem 

patches, which are the smallest-resolution spatial units that define areas of similar soil moisture 

and land-cover characteristics. In landscapes modified by humans, patches can also be defined to 

contain stream channels, road segments, storm sewers, etc. Human sources of water and nutrients 

are also defined at this level (Tague and Band, 2004). Therefore, adding trees to the existing 

patches requires reflecting the presence of trees in the existing lawn by generating patch ids from 

their respective coordinate values. Patch id numbers are generated using GRASS GIS 

(http://grass.osgeo.org), which queries the existing raster map layers to output labels associated 

with input coordinate values using the ‘r.what’ command. These labels are patch id numbers that 

represent the current vegetation type present in the raster map.  

http://grass.osgeo.org/
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Figure 11: Framework of the steps involved in estimating GI hydrologic benefits using 

RHESSYS. 
 

The next step in executing RHESSYS is to prepare additional non-spatial files, called 

worldfiles, which represent landscapes patterns like land use, tree canopy, etc. within RHESSYS. 

Worldfiles are generated with a GRASS interface program that references input raster maps and 

a text document defining initial state variables (e.g., saturation deficit within the patch level, 

which is a measure of the degree of saturation). Within the worldfile, each spatial layer is 

associated with the following identifiers: an assigned ID based on the map used and state 

variable values for stores and fluxes at each spatial level that are initialized at the start of the 

simulation. The Grass2World (g2w) program is used to generate the worldfiles automatically 

from spatial data layers within GRASS GIS. Next, in order to incorporate new trees into the 

existing worldfile based on the newly generated patch id numbers, an Awk script is used. Awk 

script is an interpreted programming language typically used for data extraction in UNIX 

operating systems (Alfred et.al, 1978). 

Finally, the modified worldfile is used to execute the RHESSYS model and forecast the 

effects of the GI design on annual mean stream flow and base flow (Ritcher et.al, 1996) at the 

outlet of the urban catchment where the neighborhood is located. These statistics have previously 

been identified as important indicators for measuring the alteration in hydrology of an urban 
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catchment due to changes in land use and land cover. By simulating the impacts of GI designs on 

mean flows using RHESSYS and comparing flows with current and pre-development values, we 

can observe the efficiency of the GI designs in moving towards restoration of pre-development 

urban watershed hydrology. This provides an initial environmental rating for the GI designs, 

which can be supplemented with nutrient impacts in the future.  
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Chapter 3 

Case Study: Human Preference Model Validation in Galesburg, IL 
 

The human preference model was trained and validated using images from Main Street in 

Galesburg, Illinois (training set), which were created by Professor William Sullivan’s laboratory 

at the University of Illinois Urbana-Champaign.. The images were acquired from a standard 

digital camera of 8 megapixels. Some image features were modified using Adobe Photoshop 

simulates potential changes in particular green settings and record human preferences for each 

variation. The preferences were obtained by averaging ratings on a scale of 1 (least preferable) to 

5 (most preferable) from 300 participants, and were used to train the supervised machine 

learning model presented in Section 2.1.7. Five-fold cross validation (Kohavi, 1995) was used to 

assess the accuracy of the machine learning model. Figure 11 shows examples from the 

validating set. The predicted ratings for each of these images were identical to the actual human 

ratings. 

 
(a) Human Preference Rating: 2 

 
(b) Human Preference Rating: 4 

(c) Human Preference Rating: 1 
 

(d) Human Preference Rating: 3 

Figure 12: Example of validation results for Galesburg image data. 
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Prediction Accuracy (%) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 𝑥 100 

The overall prediction accuracy of the model is evaluated for both the training and testing 

sets as shown in Equation 1. Table 2 shows the results for both the training and validating image 

sets from Galesburg. 

 
(1) 
 
 

Table 2: Prediction Accuracy 
 

 

The results indicate that the machine learning model predicts human preferences reasonably 

well, particularly since human ratings can have considerable uncertainty (James et al., 2009) 

The training set is predominantly tree-based green infrastructure, and generally human 

preferences increase with more trees in images, as shown in Figure 12. However, merely adding 

more trees, bushes, plants, etc. are not sufficient to obtain high human preferences. The image 

features extracted from the training set (color histogram, EOH, spatial histogram, GIST 

descriptor), and their corresponding landscape features from Kaplan & Kaplan’s preference 

matrix (1998), also play an important role.  

For example, recall that color histogram and spatial histogram help measure the green 

coloring and coherence in the design. Figure 12  (c) and (d) show that the rating changes from 1 

to 3 just by adding trees, which provides more green richness, and also by arranging the trees in 

an orderly manner along the sidewalks (i.e. Figure 12 (d) is more coherent than Figure 12 (c)). 

This added coherence can be seen in the color histogram results for these images in Figure 13.  

Training set # 200 images 
Sample Set Prediction Accuracy (%) 
Training 96 
Validation 74 
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Color histogram for less coherent image in Figure 12(c) 

 
Color histogram for more coherent image with trees in Figure 12(d) 

Figure 13: Comparison of color histograms showing increased coherence from adding trees. 

The color histogram for Figure 12 (d) shows a different distribution of color intensity as 

compared to Figure 12 (c) due to the extra green color of trees added in Figure 12 (d).  

Figure 12 (a) and (b) show how complexity, legibility, and mystery parameters of the 

preference matrix change human preferences. These parameters are captured by GIST 
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descriptors, which show the amount of richness and degree of openness/closeness in an image, 

and edge oriented histogram (EOH), which reveals the shapes of objects in the image.  

GIST Descriptors 

  
                                 Figure 12(a)                                                          Figure 12(b) 

EOH: 
 

 
Figure 12(a) 

 
Figure 12(b) 

 
Figure 14: GIST and EOH image features for Figures 12 (a) and 12 (b) reveal differences in 

complexity and legibility. 
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In Figure 14, note the variation in the GIST descriptors and edge oriented histogram for two 

different GI settings (Figure 12 (a) and (b)). The amount of richness and openness due to the 

presence of trees along the sidewalks in Figure 12 (b) is revealed in the increased energy 

spectrum in the upper right quadrant of the GIST descriptor. EOH indicates an increase in the 

count of edge gradients for trees in Figure 12 (b) as compared to 12 (a).  Hence, both image 

features identify trees spatially located on both sides of the street and their shapes, which make 

the setting more legible, mysterious, and rich; hence Figure 12 (b) has higher preference than 

Figure 12 (a).  

The results above show that the variability in human preferences for green spaces can be 

predicted based on image features that capture elements of Kaplan & Kaplan’s preference matrix 

(1998). Given that hydrologic data and models were not available for Galesburg, IL, the next 

section examines how predicted human preferences align with hydrologic benefits of GI designs 

in Baltimore. 

 

 

 

 

 

 

 

 



 

23 
 

Chapter 4 

Case Study: Implications for GI Design in Dead Run Watershed, 
Baltimore, MD 

 

The GI design methodology described in Section 2 was applied in the Dead Run Watershed in 

Baltimore, MD, which is part of the Baltimore Ecosystem Study (BES). As the available training 

set for the GI model contains predominantly tree-based green infrastructure, the case study 

application focuses on adding trees in a neighborhood within Dead Run Watershed, shown in 

Figure 15, and observing how the human and hydrologic benefits change with different designs. 

Six scenarios were examined: 1) Existing scenario, 2) Adding a single tree in the neighborhood, 

3) Adding multiple trees in open vs. clustered arrangements, 4) Adding small vs. large trees, 5) 

Adding trees on one vs. both sides of the street, and 6) Adding single vs. mixed species of trees.  

 

Figure 15: Map of Baltimore neighborhood examined for GI design. 

Google Street-view images of the entire neighborhood were extracted and used as a base case for 

human preferences. The coordinate values (latitude & longitude) of the front yard of every house 

in the region were chosen as locations to add trees. Google Street-view overlay API javascript 

http://beslter.org/
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was used to overlay the trees in the Google image for modeling human preferences using the 

machine learning model trained and validated in Galesburg (Section 3). The results are given in 

Section 4.1. 

Once the human preference ratings were obtained, RHESSYS was used to evaluate the 

hydrologic benefits of the added green infrastructure to the larger Dead Run Watershed using the 

methodology described in Section 2.2. The hydrologic data used in the simulations were 

collected by the Baltimore Ecosystem Study, as outlined by Band et al. (2007). The hydrologic 

impacts of the green infrastructure scenarios were compared with both the existing scenario, 

using 2007 hydrologic and model data from Band et al. (2007), and a pre-development scenario. 

The earliest hydrologic data available for the pre-development scenario is 1960, which was 

before the design neighborhood was built. The hydrologic results are presented in Section 4.2, 

along with a discussion of the interactions between human preferences and hydrologic benefits.  

4.1   Results of Human Preference Modeling: 
 

The human preference results for the six scenarios in Baltimore are shown below for a sample 

street view image 

 
(a) Human Preference Rating: 2 (existing 

scenario) 

 
(b) Human Preference Rating: 3 (one tree 

scenario) 
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(c) Human Preference Rating: 3 (open 

arrangement with smaller trees) 
 

(d) Human Preference Rating: 1 (clustered 
arrangement) 

 
(e) Human Preference Rating: 4 (smaller trees 

on both sides) 
 

 
(f) Human Preference Rating: 5 (larger trees 

on both sides) 

 
(g) Human Preference Rating: 4 (open 

arrangement with larger trees) 
 

(h) Human Preference Rating: 3 (open 
arrangement with mixed species) 

Figure 16: Results of human preference modeling for different scenarios in Baltimore. 

Settings that include trees, plants, bushes, etc. have been shown to reduce symptoms of 

both mental fatigue and stress (Coley et al. 1997; Sullivan et.al, 2004). The existing scenario 

(Figure 16(a)) lacks such a setting, and therefore the human preference model predicts a low 

rating. Simply by adding a single tree to the existing scenario (Figure 16(b)), the model predicts 

a higher preference rating based on shifts in the trained image features EOH and color histogram.  

  The spatial arrangement of trees in GI settings is also an important design factor that 

affects the level of complexity in the scene (Kaplan & Kaplan, 1989), which is captured in the 

model by the GIST descriptor feature. Highly complex settings are generally less preferable and 

thus the clustered arrangement of trees in Figure 16 (d) gets a much lower human preference 
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rating than the open arrangement of trees in Figure 16(c). Figure 17 shows how this change is 

captured by shifting energy spectrums in the GIST descriptors. 

GIST descriptors for Figure 16(c)    GIST descriptors for Figure 16(d) 
Figure 17: GIST descriptors reflect the increased complexity of clustered trees in Figure 16(d). 

The legibility and mystery factors of human preference require three-dimensional 

inference, allowing people to imagine themselves in the scene (Kaplan and Kaplan, 1989). The 

mystery parameter involves exploration, and therefore the view of angle plays a very important 

role in human perceptions. The arrangement of trees on both sides of the street in Figures 16 (d) 

and (f) create a more three-dimensional view where people can imagine more exploration and 

thus prefer such settings. The human preference model is able to capture this parameter through 

shifts in all four image features (i.e., color histogram, spatial histogram, GIST descriptors, and 

edge orientation histogram), as shown in Figure 18. The spatial arrangement of trees on both 

sides of a street is well captured by the spatial histogram feature and tree shape and color are 

identified by color histogram and EOH. The visual change in GI setting, which encourages 

human beings to explore the setting, has been captured by all four features.  
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GIST descriptors 

 
16(d)                                                        16(f) 

Color histogram 

 
16(d) 

 
16(f) 
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EOH 

 
16(d) 

 
16(f) 

Spatial histogram 

 
16 (d) 

 
16(f) 

Figure 18:  Image features reflecting the change in visual appearance of setting. 
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 Further, it is important to note that larger trees are more preferable than smaller trees and 

therefore have higher ratings (compare Figure 16(e) vs. (f), as well as 16(c) vs. (g)). The reason 

for this result is the higher degree of richness and complexity in the setting, which are captured 

by GIST descriptors. The degree of richness and complexity for a large versus small tree is 

shown in the GIST descriptors given in Figure 19. The setting with a large tree has fewer dark 

regions in the GIST matrix than the setting with a small tree. 

 
GIST descriptors for larger tree 

 
GIST descriptors for smaller tree 

Figure 19: GIST descriptors for GI setting with a larger and smaller tree. 

Another important factor affecting the preference ratings is coherence, which is achieved 

by having similar plant species and/or function and even distinguishable by other areas (Kaplan 

and Kaplan, 1989). People prefer having trees of the same species, and thus the arrangement of 

mixed species of trees (Figure 16(h)) has lower preference than similar trees (Figure 16 (g)), 
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even though it is still an open arrangement. This perception is modeled by the color histogram 

and EOH, which capture how different species of plants have different shades of green color and 

distinct shapes.  

4.2.   Results of Hydrologic Modeling using RHESSYS: 
 

The hydrologic impact of the GI design scenarios, given in Figure 20, compares the modeled 

change in annual mean stream flow and base (groundwater) flow for the following scenarios: 1) 

Existing condition (for the year 2007), 2), Pre-development conditions in 1960, 3) Adding a 

single tree to every yard in the neighborhood, and 4) Adding two trees to every yard in the 

neighborhood. Because hydrologic impacts are measured at the watershed outlet, the physical 

arrangement of the trees, which were important in the human preference results in Section 4.1, 

do not change the estimated hydrologic impacts. 

Figure 20: Hydrologic impacts of GI (trees) on annual mean stream and base flow in Dead Run 
Watershed.  

 The GI design scenarios significantly reduce the impacts of development on the urban 

watershed, shifting both the stream and base flows much closer to the pre-development scenario. 

The extent of the shift is particularly impressive given that the neighborhood of the GI design is 

only 1.2 percent of the land area in the overall Dead Run Watershed. The Dead Run Watershed 
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has 36% of its land as impervious (Gwynn Falls water quality management plan, 2004), and thus 

adding more trees in front of every house in the neighborhood has significant beneficial impacts. 

Table 3 shows a quantitative comparison of the two different GI scenarios.     

Table 3: Quantitative comparison of GI impacts for different scenarios  

 Stream Flow Comparison Base Flow Comparison 

GI Design 
Scenario 

% reduction 
from existing 
scenario 

% difference 
from pre-
development 
scenario 

% reduction 
from 
existing 
scenario 

% difference 
from pre-
development 
scenario 

One tree (every 
yard) 

26 32 15 23 

Two trees (every 
yard) 

36 46 23 17 

Three trees (every 
yard) 

36 46 23 17 

 

From Table 3, it is clear that green infrastructure can play an important role in restoring 

the urban watershed to predevelopment hydrology. Adding two trees to every front yard in the 

neighborhood gives better results than one tree, but the incremental improvement declines as 

additional trees are added. In fact, adding three trees to every yard does not cause any additional 

changes to flow at the outlet of watershed. Moreover, the results in Section 4.1 indicate that the 

second and third trees in each yard do not cause significant differences in human preferences 

(compare Figures 16(b) and (d)), although their arrangements across the neighborhood are 

important.  

The hydrologic benefits of adding more green components to urban watersheds helps in 

restoration of pre-development flows (US EPA, 2009), but our results also show that the human 

preference model can identify specific patterns for installing these green components that are 

more beneficial for human wellbeing.  



 

32 
 

Chapter 5 

Conclusions 
 

This work develops a novel computational green infrastructure (GI) design framework that 

couples storm-water management requirements with criteria for human wellbeing. Current 

approaches to designing green storm water features tend to emphasize rapid removal of storm 

water runoff to reduce impacts of downstream flows and pollutant loads. The approach presented 

in this paper is a first step towards incorporating the benefits of human wellbeing associated with 

these urban green spaces into the design process. In order to map landscape features that are 

correlated with human wellbeing to features that can be used to train a supervised machine 

learning model, a suite of computer vision algorithms and techniques have been used. The result 

is the first GI design model capable of predicting human preferences. 

The results obtained from this research show that image mining and machine learning 

methods can reasonably predict human preferences for green infrastructure settings by capturing 

elements of Kaplan & Kaplan’s landscape preference matrix. Variations in human ratings are 

reflected by shifts in the four image features used in this research, providing a new approach to 

rapidly screen potential GI designs along with hydrologic benefits. 

However, in order to predict the human preferences for more green storm-water practices 

such as bioswales, rain gardens, cisterns, etc., a larger training set with images and human ratings 

of such designs are needed to train the machine learning model. The results also need to be 

validated with both hydrologic and human benefits measured at the same locations, including 

locations that span multiple hydroclimatic and socio-economic settings. This will help to identify 

how GI design benefits are affected by different settings. 
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However, in future, this integrated GI design approach could implement recommender system 

technique to measure the reliability of the system at new location. The recommender system 

would work on feedback loop system, where the predicted values of model would be cross 

verified by users living in that location. 

Furthermore, in the future, advanced computer vision algorithms could be used to extract 

more local information from an image. For example, super-pixel segmentation techniques could 

be implemented to learn the exact shape of objects in an image (Fulkerson, 2007). Extracting the 

exact shape would help identifying the objects shape in image more accurately, and thus would 

improve the prediction accuracy of the model.    

Furthermore, this type of human preference modeling can assist community stakeholders, 

storm-water engineers, and landscape designers in identifying specific features and arrangements 

of GI settings that attract more human beings and reduce their stress and anxiety, thus improving 

their health. Candidate designs can be pre-screened with the machine learning tool to identify a 

small set of promising designs that can then be evaluated by residents and other stakeholders. 

Emerging technologies, such as model-as-a-service (Santos, (2003)) and social networking, 

enable interactive use of the models and ratings of candidate designs through simple Web 

browser interfaces. As more design ratings are gathered, the accuracy of the human preference 

predictions will improve over time and the machine learning model can easily be re-trained. This 

type of interactive, stakeholder-driven design process offers promise for reducing concerns that 

environmental design for efficiency alone can lead to unsustainable solutions and stakeholder 

resistance (Ostrom, 2007; Ostrom et al., 2007; Brock and Carpenter, 2007).    
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