

SAS- Semantic Annotation Service for Geoscience Resources on

Mostafa M. Elag, Praveen Kumar, Luigi Marini, Rui Lui, and Peishi Jiang

Motivation

Incorporation of semantics in data life cycle for advancing Data-as-a-Service to support:

- **Data-model integration:** overcoming the semantic heterogeneity of the rapidly growing data and model collections, will allow their seamless integration.
- > **Data discovery:** semantics will minimize the data discovery gap over the web, which is increasing tremendously and limits their reusability and interoperability.
- > **Data synthesis:** linking data based on their attributes will minimize the complexity of data synthesis.

Semantic Annotation

• **Definition**: mapping of the attributes that are associated with a data object to an information model. This model is specified by domain terminologies, which may represent any part of the triple relationship: Subject, Predicate, and Object.

> Importance:

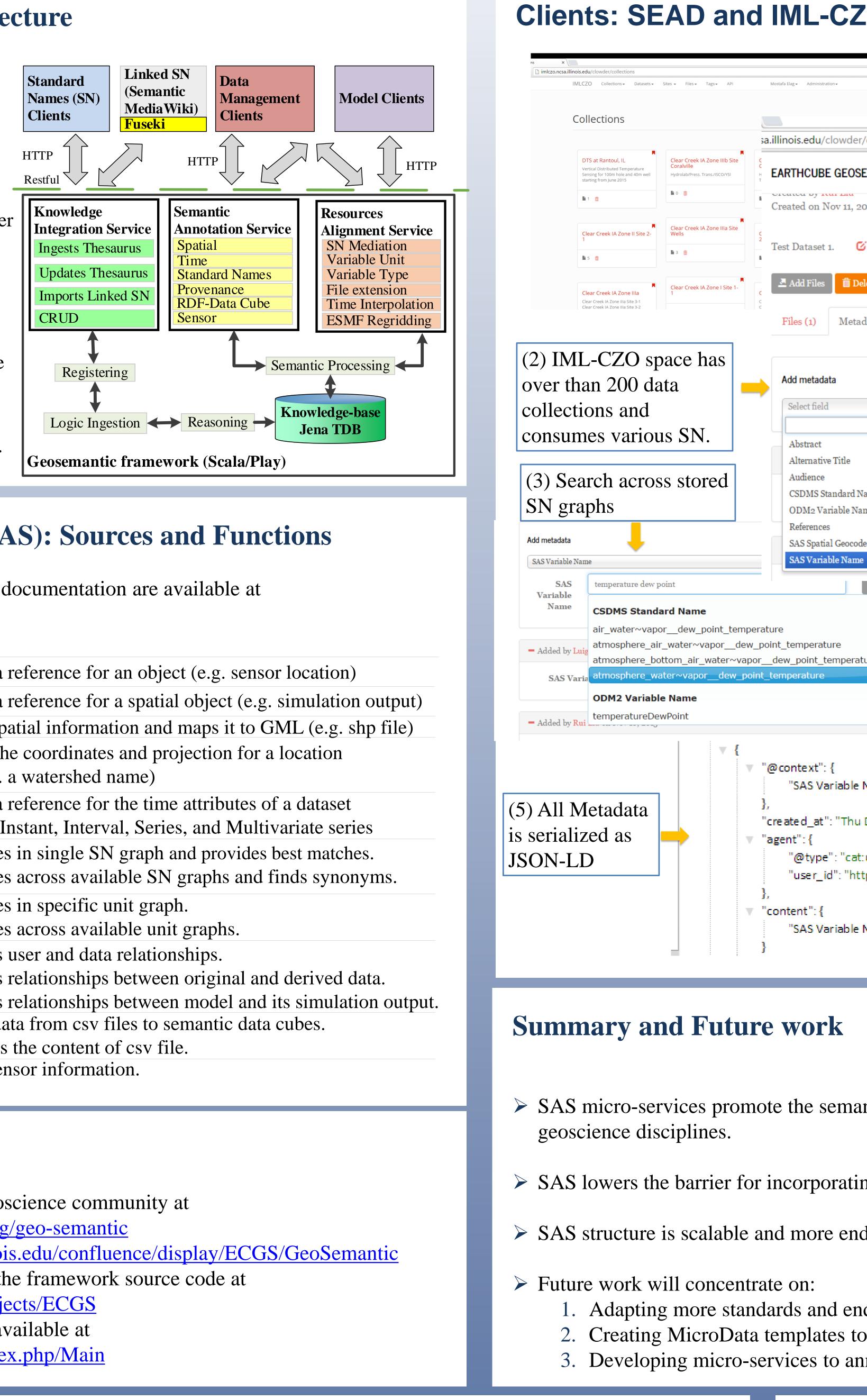
- 1. Adds meaning to raw resources such as data, models, and workflows artifacts.
- 2. Makes explicit relationships between and within resources.
- 3. Dynamically brings information together when and as needed.
- Enable emergent patterns to be discovered.

> Approach: semi-automated approach.

> Method: building a framework to bring together and manage terms from different ontologies and standards, and provide standard services to enrich the life cycle of data.

Challenges Addressed:

Set up an scalable and decentralized semantic annotation service to support metadata generation requires:


- \succ Extraction of possible knowledge from data sources, which is often implicit or hard to extract automatically to a sufficient accuracy.
- Harmonization between distributed ontologies and Controlled Vocabularies (CV).
- Interaction with human user to identify the suitable CV from synonyms.

^aUniversity of Illinois at Urbana-Champaign

elag@Illinois.edu, Abstract Number IN41C-1711

Geosemantic Framework Architecture

- ➢ It uses Micro-service architecture, where each service focus on a specific function and has a unique endpoint.
- > JSON-LD is used to serialize the metadata required to describe a data object.
- \succ knowledge base: stores the standard graphs after processing.
- Knowledge Integration Service (**KIS**): It is the information entry point for the framework. It ingests standards and can annotate them back.
- Semantic Annotation Service (SAS): enrich the data and models using scientific annotations.
- Resource Alignment Service (RAS): ensures semantic consistency between coupled models.

Semantic Annotation Services (SAS): Sources and Functions

Service	Source	Function
Location	GML	Provides a reference for an object (e.g.
Spatial Object	GML	Provides a reference for a spatial object
Spatial file	GML	Extracts spatial information and maps in
Geonames	Google geocode	Provides the coordinates and projection name (e.g. a watershed name)
Time	W3C Time Ontology	Provides a reference for the time attribution including Instant, Interval, Series, and M
Variable	CSDMS SN and	1- Searches in single SN graph and prov
Names	CUASHI CV	2- Searches across available SN graphs
Units	Unidata, SWEET,	1- Searches in specific unit graph.
	and Google Units	2- Searches across available unit graphs
Provenance	Prov-O	1- Defines user and data relationships.
	ontology	2- Defines relationships between origin
		3- Defines relationships between model
RDF Data	RDF Data Cube	1- Turns data from csv files to semantic
Cube	Ontology	2- Defines the content of csv file.
Sensors	Semantic Sensor Network	Defines sensor information.

All of the following micro-services and there documentation are available at http://ecos nesa illinois edu/sas/

Contacts

- > We invite input and feedback from the Geoscience community at
- EarthCube: <u>http://workspace.earthcube.org/geo-semantic</u>
- Confluence: <u>https://opensource.ncsa.illinois.edu/confluence/display/ECGS/GeoSemantic</u>
- > We encourage developers to contribute to the framework source code at https://opensource.ncsa.illinois.edu/stash/projects/ECGS
- Geosemantic Wiki of Standard Names is available at
- http://ecgs.ncsa.illinois.edu/mediawiki/index.php/Main

Acknowledgments

Support from NSF grants ACI-0940824", ACI-1261582", EAR-1331906", and ICER-1440315" are gratefully acknowledged.

Test Dataset 1.

"@context": {

"agent":

"content": {

"created_at": "Thu

s on the Web
ML-CZO (1) SEAD is a client for the Geosemantic framework (1) SEAD is a client for the Geosemantic framework MINICUPE GEOSEMANTICS Space Datasets Collections Search Metadata- Treated on Nov 11, 2015 Treated on Nov 11, 2015 Test Dataset 1 C The film Dule Dole Files (1) Metadata (2) Visualizations Comments (2) Notes
Select field Abstract Alternative Title Audience CSDMS Standard Name ODM2 Variable Name References SAS Variable Name SAS Variable Name SAS Variable Name (4) Choosing from synonyms based on Linked CV. ois.edu/clowder/api/datasets/56439ae7e4b04beb81
context": { "SAS Variable Name": "http://ecgs.ncsa.illinois.edu/gsis/sas/vars" eated_at": "Thu Dec 10 10:54:48 CST 2015", gent": { "@type": "cat: user", "user_id": "http://ecgs-dev.ncsa.illinois.edu/clowder/api/users/5536a5b723fbb749a786441e" ontent": { "SAS Variable Name": "temperature dew point "
work e the semantic interoperability of unstructured data across neorporating semantics in data life cycle. d more endpoints could be added to the service. e on: rds and endpoints to satisfy different geoscience communities. emplates to incorporate semantic annotation directly in HTML. vices to annotate simulation models.
I L L I N O I S