
Daffodil Unparser dfdl:outputValueCalc Scenario

(2016-05-05)

• Ilustrates how infoset events are received,
infoset tree is built incrementally

• Output-value-calc element nodes are added to
tree

• Producer Co-routine for expression evaluation is
queued on nodes waiting for values or children

• Data output streams start direct, split off a
buffering part, then are collapsed back.

Drawing conventions (so you can

understand these slides)

• XML-like infoset events

• Infoset Tree

• Direct and Buffered Data Output Streams

(DOS)

A

B E

F C D

Element C has OVC “{ /A/E/F } “.

Expression references node F, not

yet in Infoset Tree

XML Events: <a><d></d><e>….

Infoset tree is built

as InfosetEvent are

pulled from

InfosetCursor by

unparser.

No event for

element C

Direct

Data Output Stream (DOS)

………….

This stream contains some data (unspecified) followed by

• the representation of item A

• the start of the representation of complex element (or

model group) item B

• the representation of item C

• another part (ex: separator) of item B,

• the representation of item D

• another part (ex: separator or terminator) of item B

A B C B D B

Direct DOS has a

java.io.OutputStream. Data is added to

this end.

Detail that there is also a fragment byte which is

bits not yet making up a whole byte, so they

cannot yet be put into the java.io.OutputStream,

is not illustrated here.

Direct

Data Output Stream (DOS)

…………. A B C B D B

Buffering

Data Output Stream (DOS)

E F G B

This buffering DOS contains a ByteBufferDataOutputStream holding

• the representation of items E, F, and G

• another part (ex: separator or terminator) of item B

next

parent Buffering

Data Output Stream (DOS)

H

parent

next

Animated Output-value-calc

scenario

XML Events: …….

Direct

Data Output Stream (DOS)

Scenario starts with unparser

running on the main thread, with a

direct DataOutputStream. No

events have been pulled.

A

XML Events: <a>…

Direct

Data Output Stream (DOS)

A

Start event for A, infoset node for A

is created, initiator for A is output to

the data output stream.

A

B

XML Events: <a>…

Direct

Data Output Stream (DOS)

A B

Start event for B, infoset node for B

is added to tree, initiator for B is

output to the data output stream.

A

B

C

XML Events: <a>…

Direct

Data Output Stream (DOS)

A B

Buffering

Data output stream is split into a

buffering part, and the original

direct part.

Element C, which has OVC is

created because it is a required

child of Element B.

A

B

C

XML Events: <a>…

Direct

Data Output Stream (DOS)

A B

Buffering

EvalCache

Encoding = ascii

Producer co-routine

Blocked waiting for

child E

Any runtime-valued properties are

evaluated, and the values are

cached in node C’s eval cache.

SuspendableExpression is created.

In it, a producer co-routine is

created to evaluate the forward-

referencing expression for the

outputValueCalc.

This finds node A, but when it

attempts to descend into node E, it

suspends the expression, which

resumes the consumer (aka the

original main) co-routine.

A

B

C

XML Events: <a> <d></d> …

Direct

Data Output Stream (DOS)

A B

Buffering

EvalCache

Encoding = ascii

Producer co-routine

Blocked waiting for

child E

D

B D B A

Unparsing (on original main thread)

continues and pulls events.

Corresponding nodes appended to

infoset tree.

Unparsed data output goes to the buffering DOS

The pieces are:

• B separator (between C and D)

• D

• B terminator

• A separator (between B and E)

A

B

C

XML Events: <a> <d></d> <e> …

Direct

Data Output Stream (DOS)

A B

Buffering

EvalCache

Encoding = ascii

Producer co-routine

Blocked waiting for

child F

D

B D B A

E

E

Producer is unblocked (resumed)

when node E is attached. It runs

but now blocks looking for child F.

E initiator is unparsed to buffering DOS

A

B

C

XML Events: <a> <d></d><e> <f></f> …

Direct

Data Output Stream (DOS)

A B

Buffering

EvalCache

Encoding = ascii

Producer co-routine

produces value of

node F

D

B D B A

E

E

Producer is unblocked (resumed)

when node F is attached.

F

Producer stores expression value

in node C.

A

B

C

XML Events: <a> <d></d><e> <f></f> …

Direct

Data Output Stream (DOS)

A B

Buffering

EvalCache

Encoding = ascii

D

B D B A

E

E

F

Producer co-routine then unparses

node C into original DOS.

For this unparse, properties with

runtime values are taken from the

EvalCache of node C, where these

values have already been

computed and cached.

C

A

B

C

XML Events: <a> <d></d><e> <f></f> …

Direct

Data Output Stream (DOS)

A B

Buffering

EvalCache

Encoding = ascii

D

B D B A

E

E

F

Producer co-routine then calls

setFinished on original DOS.

C

Direct

A

B

C

XML Events: <a> <d></d><e><f></f>…

Deallocated

Data Output Stream (DOS)

A B

EvalCache

Encoding = ascii

D

B D B A

E

E

F

Data output streams are collapsed!

• Buffered DOS morphs into a direct.

• Buffered data is output to

java.io.OutputStream which

becomes output stream in this DOS

Old “original” DOS is discarded.

Producer co-routine terminates (and is

discarded), resuming the original

“consumer” co-routine, which is the

original unparser “main” thread.

C

That ends the scenario. We’re back to

unparsing on the original main unparse

thread, to a direct DOS.

