CLOWDER
WEBINAR

OCT. 4™, 2019

HTTP://CLOWDERFRAMEWORK.ORG/

* Webinars recordings and slides

* Developing simple metadata extractors in Python and R

s Clerprder Floster phone app

MONTHLY WEBINAR

* When: First Friday of the Month | lam CST
* Who: Users and Developers

e What: Discuss new and old features

— 2 presentations by community members

— Please suggest topics and volunteer to present

* Where: https://illinois.zoom.us/j/856788350

WEEKLY DEVELOPER MEETINGS

* When: 2", 379 4t Friday of the Month | lam CST

* Who: Software Developers

e What: Technical discussions
* Where: https://illinois.zoom.us/j/856788350

SIMPLE
EKTRACTORS

OOOOOOOOO

e What is an Extractor?

— Example extractors
— Calling extractors
— Creating an Extractor (the hard way)
* PyClowder and Extractors
— What is PyClowder
— Creating an Extractor (using PyClowder)
— Testing an Extractor
* Simple Extractor
— The contract
— What files are needed?

— Creating an Extractor (using simple extractor, both python and R)

WHAT IS AN EXTRACTOR?

Responsible for extracting information from the data

 Can extract information from files/datasets/collections

Can have many different triggers
— Upload of files
— Addition of files to datasets
— Addition of datasets to collections

— Manually triggered

Extractors can have parameters passed in

Extractors can be grouped (in version 1.8)

Extractors have a single file to describe them extractor-info.json

EXAMPLE EXTRACTORS

Responsible for extracting information from the data

¢ I nfO rm atl O n e m bed d ed I n I m ages = Extracted by http://clowder.kooper.org//api/extractors/ncsa.image.metadata
— EXI F Border color: srgh(223,223,223)

Compression: JPEG

— Text in images using OCR

Elapsed time: 0:01.419

= Artifacts:

— Faces in images

verbose: true

filename: /tmp/tmpa2AANmM.jpg

height: 2592

* Can create previews of the data
— Small preview of images
— Visual representation of the audio

* Can extract information from group of files
— Geo spatial bounding box of group of images

CALLING EXTRACTORS

Extractors are triggered by Clowder
* Sends a message to the message bus (RabbitMQ)

— Contains the data to connect to clowder

— Contains the data that needs to be operated on
Extractors process their own messages
* Listen on their own queue

— Each extractor should have their own queue

* Should not remove message from queue until finished

— If extractors crashes, message is put back on queue

CREATING AN EXTRACTOR

It simple (right)

* Just find a RabbitMQ software

 Connect to the RabbitMQ server

* Listen for messages

* Process each message

* Inform clowder that you started downloading data
* Download data

* Inform clowder that you started processing
* Process data

* When finished upload data back to clowder
* Inform clowder that you finished processing

* Remove message from the queue

PYGCLOWDER

Simplifies creating extractors

* Written in python (supports both python 2.7 and python 3)
* Takes care of RabbitMQ connection

* Does most of the grunt work

* Has functions to interact with clowder

Need to extend Extractors class

* Implement process_file function

* Uses extractor_info.json

EXTRAGTOR-INFO.JSON

Describes the extractor

e Name of extractor

— Used as the queue when sending message

— Should be unique (use company prefix)

Version number should follow semantic versioning

Author and Contributes to track who worked on it

Context
— List of all metadata that is returned by extractor

— Might eventually be used to validate metadata

Process

— What should trigger the extractor

CREATING AN EXTRAGTOR (PYCLOWDER)

Becomes simpler

lust find-a-RabbitMO-sef
+ Connect-to-the RabbitMQ-server
»Listen-fer-messages
+ Processeach-message
+Inform-clowder-that-youstarted-downleading data
»+ Dewnload-data
«|nform-clowder-that-youstarted-processing

* Process data

* When finished upload data back to clowder

Inf lowderl finishod .
+ Remeve-messagefrom-thequeue

Extend Extractor class

Implement process_message

* Get the filename

* Process message

* Create metadata result to upload
* Upload result to clowder

Make sure to start the extractor

EXAMPLE EXTRACTOR

wordcount(input_file_path):

result = subprocess.check output(['wc', input_file_path]
result = result.decode('utf-8"')

(lines, words, characters, _) = result.split()

metadata = {
'lines': lines
'words': words
'characters': characters

result = {
'metadata': metadata

}

1 result

__hame__ == "__main__":
int(wordcount("/etc/passwd"))

=subprocess.STDOUT)

TESTING EXTRACTOR (PYGLOWDER)

Start clowder

* Use docker to start the full clowder stack

* Wait for mongo, RabbitMQ and clowder to be up and running
Start your extractor

* Wait for it to connect to clowder

Upload your test file to clowder

* See message come into extractor

* See extractor run (hopefully)

e Check result in clowder

SIMPLE EXTRACTOR

What can we do to make this even easier
* Remove last bit of boiler plate code

— Create the extractor class

— Create the metadata message

— Upload the metadata to clowder
Simplify testing of extractors
* Remove requirement of clowder/pyclowder

e Call function with a file, return result

SIMPLE EXTRACTOR GONTRAGT

Should implement a function that takes a
file as input argument

{
"metadata": {

)) "lines": | 1,
Simple Extractors will return a well "words": 20,
formed map of results }"Chal‘acte"S"i 500
* List of metadata to return "breviews": [

. . . "filel.jpg",
* List of previews images to return "file2.jpg"

Metadata should map to contextin , !

extractor_info.json

SIMPLE EXTRACTOR

Provide file with actual code

* No dependencies on clowder
Create extractor_info.json

* Same as before

Create/Copy Dockerfile

FROM clowder/extractors—simple-extractor-python3:onbuild

SIMPLE EXTRAGTOR - PYTHON

Create function to do the processing

wordcount(input_file_path):

* Takes file as input
* Returns dict with results

Can have main for testing

result = subprocess.check_output(['wc', input_file_path] =subprocess.STDOUT)
result = result.decode('utf-8')

(lines, words, characters, _) = result.split()

metadata = {
'lines': lines
'words': words
‘characters': characters

result = {
'metadata': metadata
}

1 result

extractor.start()

SIMPLE EXTRAGTOR - PYTHON

Can have packages.apt

* List of Debian packages to install

* Will be installed first by docker build

Can have requirements.txt

* List your python dependencies

* Will be installed by docker build

Automatic copy of python files and extractor_info.json

Can extend Dockerfile but will be run AFTER steps above

SIMPLE EXTRACTOR - R

process_file <- function(filename) {

Same as python extractor but uses R lines <- 0

words <- 0
characters <- 0

* Uses python code to call R as
con <- file(filename, "r")

subprocess while (TRUE) {

line = readlLines(con, n = 1)

c if (length(line) == 0) {
* Uses helper code in R to call your oreck
. s }
function and serialize list to JSON lines < lines + 1

line <- strsplit(line, "\\s+')[[1]]
c o e if (length(line) '= @) {
* Python code will deserialize JSON " vords < words + Length(line)

characters <- characters + sum(sapply(line, nchar))

and send results back to clowder }
}

close(con)

clowder/extractors-simple-r-extractor-python3:onbuild list(
metadata=11ist(
lines=lines,
words=words,
characters=characters
)
)
3

SIMPLE EXTRACTOR - R

Can have packages.apt

* List of Debian packages to install

* Will be installed first by docker build

Can have docker.R

* Script to install any R packages

* Will be installed by docker build

Automatic copy of all files and extractor_info.json

Can extend Dockerfile but will be run AFTER steps above

HTTP://CLOWDERFRAMEWORK.ORG/

HTTPS://GITHUB.COM/CLOWDER-FRAMEWORK/PYCLOWDER

