1

GeoSPARQL - A geographic query language for RDF data

A proposal for an OGC Draft Candidate Standard

Xavier Lopez, Oracle

Objectives

- Spatially-enable SPARQL "endpoints"
 - Enterprise knowledge bases
 - Linked Open Data
 - GeoNames
 - data.gov
 - data.gov.uk
 - Online mapping services
- Build on existing standards
 - W3C Semantic Web (RDF, OWL, SPARQL)
 - OGC (Simple Features, Spatial Relations)
- Leverage \$B investments in geospatial data
- Provide foundation for spatial "reasoning"

GeoSPARQL WG Submitters

- Oracle
- US Geological Survey
- UK Ordnance Survey
- BBN Technologies
- Orbis Technologies
- Interactive Instruments
- We Invite others to join as Charter members!

Overview

- Objective: Define minimal RDF schema for geospatial data
 - Based on General Feature Model
 - Provides a standardized vocabulary for representing linked geodata
 - Provides a standardized vocabulary for writing SPARQL queries against geospatial RDF data
- GeoSPARQL reuses common geometry serialization formats
 - Provides FILTER functions that understand GML, KML, WKT strings encoded as RDF Literals.
- Relatively straightforward to implement on top of a spatial database, GIS, file system
- Other possibilities: OWL-based spatial reasoning

Handling Spatial Data in RDF : Objectives

- To develop best practices for managing spatial data in RDF
- To define structured vocabulary and semantics for geographic features (metadata) and relationships.
 - E.g: **ogc:dimension** property on a Spatial Object can capture the dimension of the object
- To manage geographic data as RDF terms using standard serialization formats.
 - E.g: GML captured as text with appropriate RDF literal type.
- To add the ability to answer queries involving geographic features and relationships.
 - E.g: The **ogc:touches** relationship can link two Spatial Objects in a SPARQL triple pattern.

Goal: GeoSPARQL

Find all land parcels with some type of commercial zoning that touch some arterial street

SELECT	?parcel	?hwy	
WHERE {	?parcel	rdf:type	:Commercial .
	?parcel	rdf:type	ogc:GeometryObject .
	?hwy	rdf:type	:Arterial_Street .
	?hwy	rdf:type	ogc:GeometryObject .
	?parcel	ogc:touches	?hwy }

Find all land parcels with some type of residential zoning that are within 10 KM of a boating lake

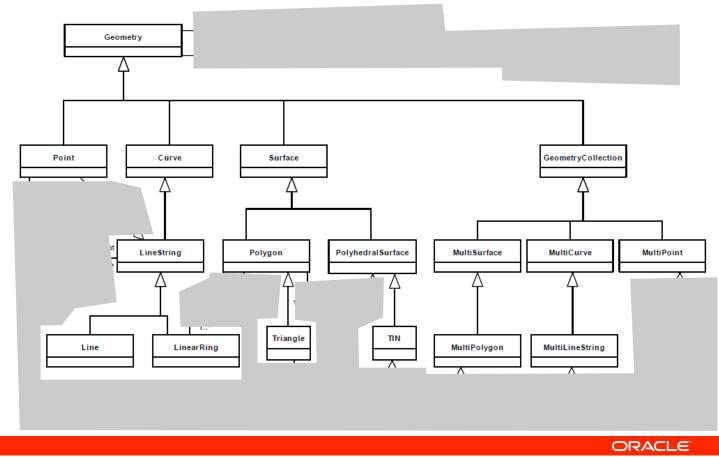
SELECT	?parcel ?feature		
WHERE {	?parcel	rdf:type	:Residential .
	?parcel	rdf:type	ogc:GeometryObject .
	?parcel	ogc:hasGML	?pGML .
	?feature	rdf:type	:Boating_Lake .
	?feature	rdf:type	ogc:GeometryObject .
	?feature	ogc:hasGML	?fGML .
	<pre>FILTER (ogc:within_distance(?pGML, ?fGML, 10, "km"))}</pre>		

Spatial Ontology – Requirements*

- Language should be able to represent
 - Spatial concepts
 - Point, Line, Polygon, ...
 - Spatial and non-spatial properties of geographic features
 - geometry and population of a Census block group
 - Metadata for each spatial object
 - dimension, SRID, ...
- objectsNot asserted: expressedwith FILTER functions
- Relationships between spatial objects
 - binary: touches, contains, ... n-ary: within_distance
- Specialization/generalization concept hierarchies
 - Point is a specialization of Geometry
- Simple composition hierarchies concepts made of sets of other concepts
 - Waterfront_Property is the set of all Land_Parcels that touch some Water_Body

ORACLE

* Adapted from: A. I. Abdelmoty, P. D. Smart, C. B. Jones, G. Fu, D. Finch: A critical evaluation of ontology alanguages for geographic information retrieval on the Internet. J. Vis. Lang. Comput. 16(4): 331-358 (2005)


Ontology for Spatial Modeling

- An agreement on the vocabulary used to represent spatial concepts
- An agreement on the encoding of (some) spatial semantics using OWL/RDFS vocabulary

Building Blocks:

Geometry Class Hierarchy *

* OpenGIS® Implementation Specification for Geographic information – Simple feature access - Part 1: Common Architecture

9

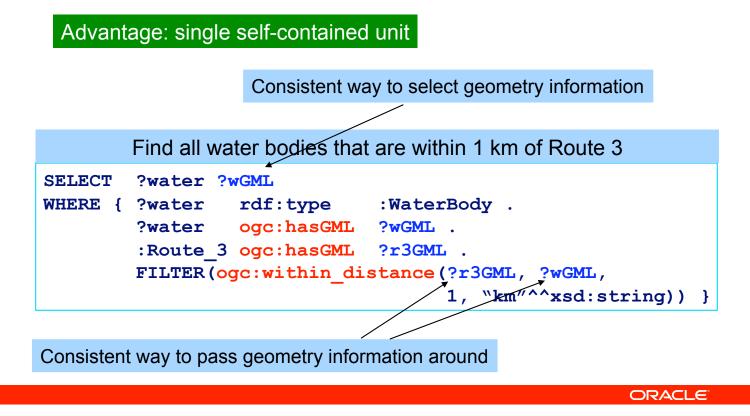
Properties for OGC:GeometryObject

Listed properties all have rdfs:domain ogc:GeometryObject

Datatype Properties

ogc:dimension:range xsd:integerogc:srid:range xsd:integerogc:isEmpty:range xsd:booleanogc:isSimple:range ogc:GMLTypeogc:boundary:range ogc:GMLTypeogc:hasGML:range ogc:GMLType

Object Properties


ogc:equals:rangeogc:GeometryObjectogc:disjoint:rangeogc:GeometryObjectogc:intersects:rangeogc:GeometryObjectogc:touches:rangeogc:GeometryObjectogc:crosses:rangeogc:GeometryObjectogc:within:rangeogc:GeometryObjectogc:contains:rangeogc:GeometryObjectogc:overlaps:rangeogc:GeometryObject

Detailed geometry information encoded as RDF XML Literal (GML in this case)

Properties taken from Simple Features Specification

An Example Query

Design Decision: Encoding Spatial Data as XML Literal (GML)

Expressing Spatial Queries with SPARQL

- Types of spatial properties, operations and relationships
 - Descriptive datatype properties (e.g., dimension)
 - Binary relations (e.g., touches, intersects, contains)
 - Parameterized relations (e.g., within distance)
 - Operations that produce new objects (e.g., buffer, union, intersect)
- SPARQL features to use (rely on standard SPARQL syntax)
 - Triple patterns
 - Extensible FILTER functions
- Issues
 - What should be in a FILTER clause and what should be in a graph pattern?
 - · How do we test relationships with transient spatial objects?
 - What should the arguments be to Spatial FILTER functions?

Next Steps

- Draft Candidate OGC Specification
 - Spatial Query for SPARQL
 - Spatial Ontology
- Inaugural GeoSPARQL WG Meeting
 - Silver Springs, Thursday, June 17, 2010
 - Finalize WG charter, WG members
- Open Review
 - Late 2010
- Interoperability Tests (2010-11)
 - USGS, UK OS, others?
- Future OGC Working Groups?
 - Catalog Services
 - Feature Services