Multi Node Kubernetes developer environment - using VBox
/Vagrant/CoreOS

Features of an Effective a Developer Environment

Convenience and Productive
O Fast/Easy to install - everthing for development included by default
© Fast/Easy to start/stop/update/teardown
© Ability to reproduce and share environments
© Easy to manipulate multiple instances/environments and operate simultaneously
" (golden/dev/test/experimental), compare/contrast/diff environments
= experiment with federation and multi-site deployments in DevEnv
© Export/Import/shareable instances - reproducable in many contexts
= Share with others, publish, reproducable environment as part of bug reports, ...
Reliability and Isolation
© Instances isolated from each other and the developers system and from on-line requirements
© Encapsulated - full environment enclused in the developer environment
® Run multiple clusters in a laptop in an airplane disconnected from internet
© Intentional upgrade process - avoid breaking auto-update
© (not automated), encapsulated (minimal dependencies on external system/tools)

Accuracy and Portability
O Represents the 'production’ implementation of the system as closely as possible
© Run in all popular developer laptops/system/OS combinations
= Windows, Linux, Mac, ...
o Developments in DevEnv are directly applicable to production systems
© Support development at all-levels as closely as possible
= system-level, operations-level, apps, user-facing, and development at all levels
Extensibility - Ability to extend and customize the platform as well as the developer environment
© l.e. no specific tool or model lock-in, freedom to change
© Network - emulate multiple physical networks, ability to change k8s network plugins
© Distributed - Emulate multi-site, multi-instance in dev
" Federation, Distributed/federated/multi-site/edge-oriented development and testing

Some Developer Use Cases

Development of WB API/Web services
Development of integration with external storage/compute - DataDNS
Experimentation with K8s Federation - Federating multiple clusters and and A/B (reference/experimental) dev/testing in a developer environment
Experimentation/development of in-cluster system services: services in k8s that support NDS-level services

o gluster automation, PVCs and alternate storage/volume models in WB, in-cluster authz/authn, network policy security, ...
Test/Evaluation of systems-level SW: New k8s versions, different container runtimes/plugins, different network overlay plugins

5 minutes to a running multi-node cluster that can run in your laptop. VBox machines running CoreOS on host-local networking, not exposed to
internet. Notes below for other options.

Here is the recipe, adapted from the official instructions here: https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant.html

1.
2.

o O A

8.

Install VirtualBox
Install Vagrant
a. Check vagrant: "vagrant box list"

. Install kubectl

a. curl -O https://storage.googleapis.com/kubernetes-release/release/v1.5.2/bin/linux/amd64/kubectl
b. install in /usr/local/bin or your favorite spot in your PATH

. git clone https://github.com/coreos/coreos-kubernetes.git
. cd multinode/vagrant
. vagrant box add http://alpha.release.core-os.net/amd64-usr/current/coreos_production_virtualbox.json

a. will download CoreQS for virtualbox

. ¢cp config.rb.sample to config.rb and edit:

a. Pick the channel and node sizes and counts according to your laptop resources (primarily memory), here's one example:
$updat e_channel =" al pha"
$control | er_count=1
$control | er_vm nenory=512
$wor ker _count =2
$wor ker _vm nenor y=1024
$et cd_count =1
$et cd_vm nmenory=512

Good to check your networking for collisions on unrouted address ranges that you'll encounter at work, home, etc.

https://coreos.com/kubernetes/docs/latest/kubernetes-on-vagrant.html
https://storage.googleapis.com/kubernetes-release/release/v1.5.2/bin/linux/amd64/kubectl
https://github.com/coreos/coreos-kubernetes.git
http://alpha.release.core-os.net/amd64-usr/current/coreos_production_virtualbox.json

a. The default VM network specs are in the Vagrantfile: 172.17.4/24
9. vagrant up --provider virtualbox
10. export KUBECONFIG="${KUBECONFIG}:$(pwd)/kubeconfig"

a. Alt: Add the config to any existing ~/.kube/config if you are working with multiple clusters and or namespaces (kubectl set-cluster,
kubectl set-context, etc.)
11. Should be operational, some useful commands (use in the multinode/vagrant path)

. vagrant ssh c1 (or the other names) to get into coreos

a
b. vagrant status

c. vagrant suspend/resume

i. Once in a while net doesn't come back, and kubectl says:

The connection to the server 172.17.4.101:443 was refused - did you specify the right host or port?
ii. In this case you can vagrant halt, vagrant up
d. vagrant destroy (obliterates)

i. Just vagrant up and restart afresh

Comparison to Hyperkube (container-based) local install

Advantages to local container options:

DevSystem Advantage
Hyperkube Single dependency
Efficiency
Vagrant Familiarity with
process

Isolation between
instances and from
developer system:
better stability,
reproducability,
easier support

More accurate w.r.
t. hosted and self-
hosted production
environments

Flexibility

Supportability

Notes:

Impact

Low

Low for
development
class
systems

Moderate

High

Low - App
Development
High -
Systems
Development

Low - App
Development
High -
Systems
Development

Very High
and potential
non-value-
add timesink

Notes

docker install vs Vagrant and VirtualBox

Container-based is more eficient in terms of resources. VM's are always overprovisioned

Use of VM's by developers is a common development model/process that's widely understood
Known familiar model is easy to adopt and faster to get started - more self-serving w.r.t. problems.

No entertwining with local docker environment - avoids widespread docker troubles/inconsistencies/breaking
updates

easier cleanup/reinit of environments without local docker cleanups
ability to run more than one environment

Overloading Docker will not kill developers system - observed problem in NDS
Avoids potential collision of WB images and other local docker images unrelated to WB devenv.
True emulation of multi-machine deplolyment, true multi-network capabilities with routing, true ingress without

hostport collision, true operations emulation of machine failure/upgrade/maintenance, ability to work with node
device-layer storage.

Changeout capabilities: network layer, docker layer, OS layer
Can experiment with different OS and/or multiple OS on different machines in single cluster

Complex developments can be exported/shared and disseminated for evaluation and/or group development
purposes. Accelerates development in comparison to the starting-from-ground-zero/replay model and allows
more involved experimentation with complex environments.

Can support addition non-cluster vm's with tooling/ops ennvironments - like the gcloud shell
Supports low-level OS and networking debug tools that are

Uniform support through VM image gives full intentional control of configurations and upgrades - this is a huge
ongoing issue in the k8s community for a reason (not simply an issue of opinionation) docker change has been
an enormous support timesink - and NDS has direct experience on multiple occasions with this - avoid docker
update dependency if possible.

Self-test by devs having trouble: stop the trouble env, start a new one to test basic functionality and A/B test to
discover where things went wrong

State of devenv is tranferrable - can checkpoint the VMs and share the state with support to reproduce
troublesome/important issues - yes semi large-files (but compare to jupyter pull?), but easy in comparison to
trying to share a hyperkube environment.

1. Can be used for volume/fs work by adding VBox disks to nodes. Kubernetes doesn't have a VBox/vagrant volume driver (yet), so you get raw

disk on nodes like we have in OpenStack.

2. Can be used for ingress/network by adding additional interface to the node to be LB.
3. It can be left running, or vagrant suspend/resume can freeze/thaw the whole cluster in a few seconds if you want it toiling around in the
background. Can also vagrant halt/up to shutdown/reboot and cluster state (etcd) is preserved.

	Multi Node Kubernetes developer environment - using VBox/Vagrant/CoreOS

