
Enhanced Metadata Support
This page describes the updates made in the to provide enhanced support for managing metadata terms, and annotating Editable Metadata Branch
resources, with a new design.

Prior Design

Individual metadata entries are stored as Mongo documents and are associated with a file or dataset (comments say metadata can be attached to
collections but this is not implemented in the GUI) and a JSON-LD context.
Entries through the GUI usually result in one term/value per entry, but some types (e.g. geospatial) produce more than one term/value/a json
value that is displayed with structure. Entries through the API can include multiple term/values which can only be deleted as a unit. Deletion
simply removes a metadata document and does not track provenance.
JSON-LD contexts are stored as another document collection and can be referenced by multiple metadata documents, but these contexts are not
aligned with the space metadata choices (e.g. existing metadata docs and contexts are not updated with changes to a space's choices for
metadata terms. That only affects the terms available as input options in the GUI). This allows multiple labels to be in use for one semantic term
and for multiple terms to use the same label (in different entries).
Metadata management allows space admins to add/edit/delete entries starting from an instance default list controlled by the overall sys/instance
admins. Entries have a label, a formal URI predicate (which together form the context entry. If a URI is not given, a unique URI is generated), and
a type which controls the input widget used for entry (but not display). Some types connect to a 'third party' earth cube geosemantics server to
retrieve controlled vocabulary lists or to invoke a geo name to coordinates mapping service, etc. Simple internal types include string and date.
Metadata definitions are separate docs associated with a space

Updated Design

Metadata from extractors is not affected - this metadata is entered, stored, and displayed as before, with the exceptions that 1) it is pulled into a
separate section (name configurable - Managed Metadata) by default) from the semantic metadata entered by users through the GUI or API, and
2) it starts collapsed rather than expanded. As in the original design, extractor metadata can have a context document, but the metadata itself is
treated as json (the json-ld verification performed only checks that part of the message is json-ld but stores any plain json as well). The context
provided is not used for display or interpreting the metadata.
For semantic/json-ld metadata entered via the GUI or through a semantic extension of the metadata api, the primary artifact is a json doc of the
current metadata values referencing a space json-ld context. Each 'metadata summary' doc refers to the dataset/folder/file it describes by
ResourceReference (type + id). CRUD operations from the GUI or API update this document via the metadata service. A history section of this
summary document captures updates (documenting not only new adds, but edits, deletes as well) - it could be managed as a separate document
at some point.
Context/definitions are maintained, one per space, as part of a doc containing all current terms (each term has label/URI and definition, type, and
a flag indicating whether it is available in the add metadata menu. Additional info about any cardinality, recommended/required info, etc. could be
added)
The metadata api is extended to allow a 'content' entry which works as before (e.g. as used by extractors through pyclowder) or a content_ld
entry which must provide a valid json-ld context for all submitted terms. Terms that match existing entries in the space's definitions are recorded
using the labels from the definitions, regardless of what label is used in the api. Terms not in the space definitions are added to the space but
flagged to not show up as new options in the 'add metadata' part of the GUI. This allows any terms to be entered while still allowing space admins
to control what can be added via the GUI.

https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/clowder/browse?at=refs%2Fheads%2Ffeature%2Feditable-metadata

Metadata display showing widget for input (date) and display (a single line display of the scientific variable term and unit from the SAS service), and the edit
/delete icons for term currently hovered over. Adding/updating/deleting entries will dynamically update the page display without a reload.

The provenance of Audience entries. Hovering over an edit or delete will show the add or prior edit that it acted upon.

Metadata is displayed by term, with the label showing, and the semantic term available by popup. Individual entries are shown within the section
for that label/term with edit and delete icons. The overall section has one entry showing the creation or last modified date as a link. Clicking the
link shows a popup with the detailed provenance of each entry (showing all adds/edits/deletes by person and date, with highlights showing the
provenance of which edits/deletes correspond to which adds)
The 'add metadata' section has been updated to allow edits of existing values. The widgets for different types (string, list, dynamic list, scientific
variable, date/time, location wkt, and (for SEAD) person) are invoked for add/edit and, as appropriate, display of the entered values (strings just
show as strings, but locations, for example show in single line form rather than as a block of json.) Stored formats for some have been changed
to better support round trips through editing. Displays are forgiving - if, for example, the api, which is not type-aware, is used to enter a value that
does not match the expected form, the raw value will be shown (the people widget is an example - if the value is not recognized as an ID, it is just
shown as a string. If it is recognized, it is shown as a name with email popup and link to the person's profile document).
 Each metadata entry is given an id - an attempt to edit or delete an entry that has already been edited/deleted (e.g. from a stale webpage) will fail.

Updated metadata definitions table showing sorting and info about columns, condensed type info for lists derived from services, and the 'allow entries'
column. In this example, 'Abstract' is no longer an option in the 'add metadata' list for this space, but existing abstract entries have not been deleted.

The space metadata definition display has been updated to compress information about any connection to an external service and to add a
column for a flag that indicates whether a term should be shown in the 'add metadata' options in the GUI. Deselecting that flag stops it from being
added through the GUI, but keeps any existing annotations using it. Deleting a term brings up a warning box and, if delete is confirmed, will
remove any annotations in the space using it. Editing/adding new terms will now block any attempts to create conflits where two terms have the
same label or same formal URI. FOr SEAD9with the StagingArea plugin), the labels and terms used to publish non-metadata fields (e.g. fields in
the dataset and file models) are also blacklisted. Edits that change a label update summary docs where that label is used (using a db query). The
table is also sortable now, allowing, for example, terms from Dublin Core to be grouped together.

Updated search interface showing the addition of a source (a space, no space (using the defaults for the clowder instance) or 'Managed Metadata' - the
json terms generated by extractors.) Also shown is how widgets are used for terms that are, for example from dynamic lists. Queries from json-ld metadata
use the formal URIs rather than labels and will find semantically matching entries across spaces. "Managed Metadata" is a configurable term, which could
be changed, for example, to "Extracted Information". Typing in the term box for this entry will pull up matching terms indexed in Elastic Search as before.

The search interface and mechanism have been updated to better separate extractor/managed metadata (works as before) and semantic labels
/terms. To do that, users indicate which space should be the source of the metadata definitions used in a query term and only labels from that
space are available as options. The query itself is done using the formal URI, so searches will work across spaces, finidng entries that match for
the semantic URI, regardless of what label is used in that space. The place to enter values to search for has been updated to use the same
widgets as for metadata entry, i.e. a calendar will display for dates, list types will only display the available list options instead of allowing free text
entry, etc.

The sharing plugin is supported by defining one space as the 'context' space for each entry - the metadata definitions form that space are used to
display the resource's metadata.
Any operations that move a dataset or file between spaces (or a change in the context space when the sharing plugin is used and a dataset is in
multiple spaces but is removed from its context space), is treated analogously to when the API is used: terms that match definitions in the new
space are updated to use the appropriate labels,any definitions that do not exist in the new space are added but flag to not show in the new
space's add metadata' fields.
For SEAD, publication requests and files do not change space when the dataset they refer to moves - they remain in the staging area for that
space and keep the original space as their context for publication. (They do still show as publication requests for the Dataset on its page.)
Because the semantic support is through an extension of the api, extractors could write json-ld entries that would appear as user metadata
instead of part of the managed/extracted metadata. This would allow such entries to be published (extracted metadata is nominally redundant and
is not included in SEAD's publications) and would allow user editing. This might be appropriate, for example, for a face detection extractor - the
faces are not simply inferred from the data format/embedded metadata like image properties are, and the conclusions as to who is in the photo
could be incorrect and need to be editable by users. Whether to do this is up to the extractor and/or decisions about what to include in pyclowder.

Metadata counting is updated - extractor entries will continue to count as one per submission, regardless of the number of terms, while semantic
user metadata will count the number of individual entries and account properly for edits (no change to count) and deletes (-1). The metadata
count display is the sum of these two metadata types, but could be separated into two counters. (Since duplicate deletes are caught, it should no
longer be the case that hitting the delete button more than once can artificially decrement the count.)
Other bug fixes including one that forced all location entries to be labelled "GeoJSON" regardless of the label(s) defined in the space for locations
and one that dropped all but the last submission for a given metadata term for files during the publication process. Other minor fix/updates are
captured in commit comments.

Status

As of Aug 15, the branch is up-to-date with the dev branch and includes all of the functionality described above. It passes 80 tests (3 tests for add
/get metadata apis on datasets and files, which I believe are deprecated, have been removed since the underlying methods, which use the old
metadata model, have been removed.). A working test server is available at for anyone who'd like to sign up. At present, http://141.211.23.234/
metadata summary documents are generated on-demand when a page is viewed. This could be moved to a database updater. A new collection -
metadatasummary - is created for the new metadata model. At present, existing user metadata entries are not removed, which means that a given
clowder instance could be ~rolled back to its current state by switching back to the dev branch software and removing this collection. (Adds/edits
/deletes made using the new model will be deleted. New metadata definitions will remain, and will have the new flag, which will be ignored by the
dev-branch code.) To accept this new code, a decision needs to be made about whether to process existing user metadata up front, in a database
update, or dynamically, and to remove the old metadata docs and context entries that are replaced (nominally they can remain but they won't be
used).

Comparison:

With goals and design ideas: The above design as implemented is consistent with the ideas outlined below (from the original discussion) though
support for cardinality and selecting definitions from external vocabularies have not been implemented. (They should be straight forward to add).

Design Goals:

The redesign retains the benefits of the current design (e.g. ability to add custom terms to a space, provenance regarding the origin of specific
annotations, ability to add widgets for input/display, send notices of changes to the message bus) and supports:

organize metadata entries by vocabulary (future) and/or alphabetically and/or by purpose (future)
clearly distinguish extracted (and therefore ~redundant) metadata from provided values
allow some extracted terms to be propagated through publishing (right now only provided metadata is published, but space admins or
repositories may want to keep high value/hard to reproduce extracted metadata as well)
emphasize the term/definition/value for metadata and de-emphasize/hide by default the provenance of who entered it when
enable metadata values to be edited
deletions/edits of metadata should be captured in provenance
manage JSON-LD context(s) at the space level (i.e. assuring that all instances of a label refer to the same predicate, all predicates have
one label, even as space admins make changes, and handling metadata entered via the API if/when it has conflicting context info)
support the exchange of contexts/metadata 'profiles' between spaces/ the use of metadata profiles from one space in a read-only
manner from another (i.e. one space controls the label/URL/type/definition info)
support (entry/display) for structured metadata values (e.g. json/json-ld)
support consistency of metadata for all publications in a space (for a given space config)
enable blacklisting of predicates/labels used internally in the software (e.g. for title, description, owner, dates, license, etc.)

and should simplify future enhancements such as:

support metadata that references external URLs/identifiers and/or internal identifiers (e.g. with Collections/Datasets/Folders/Files)
add some or all terms from existing third-party vocabularies
allow metadata to be marked as recommended and/or indicate which metadata will be required during publishing, specified directly by
space admins and/or based on available/preferred/default registered repositories)
support cardinality constraints (number, order?)

 Design Ideas

Metadata mgmt GUI would edit context/definition doc, doc would include any new fields such as term definition, cardinality, etc. as
needed. JSON-LD context would be generated from this doc when needed
Metadata entry would use this doc from the global instance or the space the entry is in to populate the add metadata box. (with sharing
on, a decision would be needed as to whether to allow annotation based on one spaces info or to allow annotation in terms of other
spaces). Type/definition, cardinality and other info would be used to enhance the GUI.
Display of existing terms would be changed ~per the GUi redesign and mockups done by Michael Iannaccone (see and SEAD-1042 http

) - presenting metadata values by term s://opensource.ncsa.illinois.edu/jira/secure/attachment/21290/21290_metadata-GUI.jpg
alphabetically or by namespace/category, with a widget to expand the provenance of the entry (which would include any trail of edits).
Edits to a metadata definition would tie to entries via the formal predicate, e.g. for an entry for 'method'/ a http://example.org/method,
change of the label for that term to "Experimental Method" would show in the display, whereas the attempt to create a new term
"method": http:otherorg/method" would either be blocked due to the label conflict until the original label was updated or would trigger a
confirm that the existing metadata should be updated.
Changes to the space metadata definitions would not be tracked (could be tracked via update docs as with metadata values)
Metadata added through the API would be matched to existing terms (required to be json-ld, the predicate would be matched to the
space context and that label used (i.e. the api would not generate an alternate label for existing space definitions). New terms seen in

http://141.211.23.234/
https://opensource.ncsa.illinois.edu/jira/projects/SEAD/issues/SEAD-1042
https://opensource.ncsa.illinois.edu/jira/secure/attachment/21290/21290_metadata-GUI.jpg
https://opensource.ncsa.illinois.edu/jira/secure/attachment/21290/21290_metadata-GUI.jpg
http://example.org/method,

incoming API requests would be added to the context doc as 'view-only' terms - this allows the API and extractors to add any terms they
use. Admins could add additional info (a definition, type, etc. to such generated definitions and/or allow them to appear as add choices in
the GUI.
Movement of items between spaces would be handled as though the API had been used to enter the metadata as part of the transfer
assuming no space sharing. With sharing on, the decision of how to handle annotation would have to handle being removed from one of
the spaces)
Metadata edits would invoke the same type-specific entry widget as adding a new value
Cardinality of 1 would remove an option from the add menu if a value exists
A new type of metadata would be a link/relationship and there would be a widget(s) that would recognize URLs and internal IDs/ID URLs
and make them live links (URL might just become live, but a urn:<id> value would get replaced by a dataset name or path and be a link
to the page for that item. Other GUIs could be added (e.g. once bulk ops exist, one could select 2 items and then create a link between
them, etc.) - these could populate the same metadata field, i.e. relationships would not be a separate type/managed separately. (It would
be possible to do the lookup from Clowder URN to item via javascript, which would enable them to be displayed by name in other apps
as well if desired - this is what is done for ORCID IDs where we share a javascript across Clowder and repositories.)
Required/recommended metadata would be identified by color/icon in the add metadata list (perhaps required fields could be shown with
empty values and could be edited)
Metadata mgmt GUI could be extended to allow viewing/selection from other vocabs (e.g. Dublin Core, from an external website (in their
format or a json conversion we or geosemantic server maintain), or another space profile (e.g. reading that space's context/definition doc
and listing the entries for selection - perhaps sortable by label/URI/type/or category, etc.). Once selected, there would be no live link to
the original vocab/profile.

Pros

This design builds on the strengths of the existing one in terms of maintaining (and improving provenance), supporting typed metadata, and
enabling space-level customization. Many of the GUI-level changes are design agnostic and could probably be used/adapted for other
storage designs. However, changing the low-level design to focus on a single space-level context/config artifact and pre-integrating the
metadata for a given item, provides a clear mechanism to handle edits, context differences between sources (different extractors, different
spaces, changes in space config over time) that will avoid confusion going forward - cases where different entries for the same predicate get
shown with different labels, where a label is show twice because it is used for two different predicates, where it would be unclear whether
type or cardinality rules only apply to the correct label/predicate combo, matching labels, or matching predicates regardless of label. It would
also clean-up these types of issues for publication, and would make it easier to share the context/config of one space with another. Aside
from changing how information is stored, which would be best to do early, most of the other functionality could be pursued incrementally.

Cons

In some sense, the benefits of this redesign only accrue to projects that actually use the flexibility and customizability of the system. For
instances with a single space or no customization of metadata per space, where all of the metadata comes from the GUI rather than the API,
where metadata is added by an authoritative user and isn't edited, etc., the current design is OK - the issues pointed out above could
happen, but probably won't in practice. (Over time, and with more independent groups using an instance, these issues can and do become
real though.). Some groups may thus see this design as overkill/premature. Aside from the added work to implement it, it's not clear that
there are big cons. Adding a new metadata value means editing a document rather than just storing a new one, but retrieving the existing
values would be one document recall rather than a scan across separate docs. Extracted metadata could be managed (with the space
determining the label and/or enforcing type/cardinality rules) which would make the interface look more consistent but raises the issue of
what happens if extracted metadata doesn't meet constraints? (Similar for other uses of the API.) Most of these are relatively neutral, but
they make it clear that this design would have impacts outside the core of user-entered metadata. To be fair, once spaces have access
control and customizable metadata, the issues of how extractors and api users handle those customizations, and how features such as being
able to share datasets across spaces interact with these features (if two spaces have different metadata terms, which terms show up in the
add metadata list? is it affected by whether I have access to one space or the other? what happens for extractors that work on behalf of a
user through their key (a capability in development I think), etc.). I think this design can help answer those questions over time, but it does
favor/flavor the answers towards a space-centric view of management/control.

Other design ideas:

GUI-centric

Leave the current metadata and context storage ~as is and focus in the GUI changes:

info about the annotations of a given object would occur as they do now, but there would be more logic to organize the display
alphabetically, etc.
metadata management page could be updated to support new types, cardinality, etc. Enforcing cardinality would require tracking existing
entries (and deciding what constitutes a match)
editing would require some update to the model (is it delete and add? what happens when a user wants to edit one value and the original
entry contains several (the API allows entry of several terms in one call which is stored as one doc))

Pros

potentially less work up front

Cons

Would still leave questions of consistent labels as metadata is edited open unless some design changes are made (e.g. when a label is
updated, do exiting entries get scanned and changed? are they changed dynamically for display?) - Similarly, a means of tracking deletes is
required if edit is delete/add and/or if we want to track provenance for deletes. And, if deletes are tracked, assembling the set of metadata to
display involves playing the sequence of operations forward. One can keep going through all of the other requires/desirable features above
and ask similar questions and ask whether this approach, by the time it addresses those requirements, remains simpler/easier/faster to
implement than the proposed design. I.e., it's not clear that this design really avoids any issues in the proposed one - if we want the
functionality listed some decisions and changes are needed and the question really becomes whether it is easier to implement given this
underlying storage/service design.

	Enhanced Metadata Support

