Preparing Tools

The Brown Dog Data Transformation Service (DTS) is a highly extensible/distributed service providing a uniform means of managing and accessing
transformation capabilities within the web. Utilized tools can come in the form of command line applications, GUI driven applications, libraries, and/or other
services. Here we go over the process of preparing a new transformation tool, either an extractor or a converter, for usage with the DTS.

Using the BD Development Base

BD-base runs the necessary dockerized Brown Dog Data Transformation Service components (Clowder, Polyglot, Fence, RabbitMQ, MongoDB, Redis, an
example extractor, an example converter, and the BD CLI) allowing a developer to get up and running more quickly as they create and debug new
extractors/converters. You can get the BD-base by cloning the git repo:

git clone https://opensource.ncsa.illinois.edu/bitbucket/scnf bd/ bd-base. git

or download the VirtualBox VM image and run it:
https://browndog.ncsa.illinois.edu/downloads/bd-base.ova

After downloading BD-base, users can simply run the bash script in the command-line to start up the BD development base.

cd bd-base
./ bd

The BD-base script will split your terminal into panes and start each of the services needed for the Brown Dog DTS. This provides a useful and convenient
way to view the logs of running services in panes.

127017, type=UNKNOWN, state=CONNECTING}]}. Waiting for 30000 ms before timing out

I 0622 1! 21.914 THREAD1: Starting server...

1 0622 1 22.125 THREAD26: Opened connection [connectionId{localValue:1, serverValue:2}] to mongo:27017

1 0622 1 22.128 THREAD26: Monitor thread successfully connected to server with description ServerDescription{address=mongo:27017, type=STANDALONE, state=CONNECTED, ok=true, version=ServerVersion{versi
onlist=[3, 4, 5]}, minWireVersion=0, maxWireVersion=5, maxDocumentSize=16777216, roundTripTimeNanos=1364578}

I 0622 22.149 THREAD33: Opened connection [connectionId{localValue:5, serverValue:6}] to mong

I 0622 22.148 THREAD3@: Opened connection [connectionId{localValu serverValue:3}] to mong

I 0622 22.155 THREAD32: Opened connection [connectionId{localValu serverValue:5}] to mong

I 0622 22.164 THREAD31: Opened connection [connectionId{localValue:3, serverValue:4}] to mongo:

I 0622 22.449 THREADL: Tracer: com.twitter.finagle.zipkin.thrift.SamplingTracer
I 0622 22.478 THREAD38: Creted index date_-1
I 0622 22.648 THREAD38: Creted index resource_1
I 0622 22.776 THREAD38: Creted index resource_id_1
1 0622 22.930 THREAD38: Creted index user_1

B R E————

2017-06-22 15 32,983 - [DEBUG] - application - Adding new vocabulary definition MetadataDefinition(594be|docker logs -f 85ac2272e && clear

874e4b0960d44ea7514,None, {"label": "GeoJSON", "uri”: "http://geojson.org/geojson-spec.html", "type": "wkt"}) INot privileged to set domain environment.

2017-06-22 15:55: - [DEBUG] - application - Getting value for countof.users |wifi-60-41:bd-tmux bing$ docker logs -f 72785ac2272e && clear

2017-06-22 15 32,987 - [DEBUG] - application - Exchange is not an empty string: clowder 12017-06-22 15:55 271 INFO : ocr - Registering extractor...

2017-06-22 15 32,990 - [INFO] - application - Application has started 12017-06-22 15:55 274 WARNING : ocr - Error in registering extractor: HTTPConnectionPoolCho
]
]

3,
3,

2017-06-22 15 32,991 - [INFO - application - [securesocial] loaded identity provider: userpass |st="clowder', port=9000): Max retries exceeded with url: /api/extractor ey=rlek3rs (Caused b
2017-06-22 15 32,992 - [INFO application - [securesocial] loaded event listener SecureSocialEventlis|y NewConnectionError('<requests.packages.urllib3.connection .HTTPConnection object at @Ox7f3bbad
tener 188a90>: Failed to establish a new connection: [Errno 111] Connection refused’,))
2017-06-22 15:55: - [INFO play - Application started (Prod) 12017-06-22 15:55:23,505 INFO : pyclowder.extractors - Waiting for messages. To exit press
2017-06-22 15 - [INFO application - Starting extraction status receiver |CTRL+C
2017-06-22 15:55: - [INFO play - Listening for HTTP on / |

|

Not privileged to set domain environment
wifi-60-41:bd-tmux bing$ docker logs -f c16f717691c9 8& clear Available Software
[Thu Jun 22 15:55:28 2017] [steward]: Successfully connected to RabbitMQ: server: 172.17.0.3, vhost: /. ImageMagick (ImageMagick)
[Thu Jun 22 15:55:28 2017] [steward]: polyglot_ip: 172.17.0.6
Starting the internal HTTP client Software server is rumning ..
Starting the internal [HTTP/1.1] server on port 8184 Starting the internal HTTP client
Starting edu.illinois.ncsa.isda.softwareserver.polyglot.PolyglotRestlet$4 application Starting the internal [HTTP/1.1] server on port 8182
Starting edu.illinois.ncsa.isda.softwareserver.SoftwareServerRestlet$2 application
Polyglot restlet is running... Starting distributed software restlet notification thread
Connecting to RabbitMQ server and starting consumer thread
[Thu Jun 22 15:55:28 2017] [steward]: Adding 172.17.0.5:1:4969 Connecting to RabbitMQ server and starting registration thread

docker exec -it -u bdcli @0d6c864c6da2 bash

Not privileged to set domain environment.

wifi-60-41:bd-tmux bing$ docker exec -it -u bdcli @d6c864c6da2 bash
To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

bdc1i@9d6c864c6da2:~$

https://opensource.ncsa.illinois.edu/confluence/display/BD/Definitions#Definitions-extractions
https://opensource.ncsa.illinois.edu/confluence/display/BD/Definitions#Definitions-conversions
https://browndog.ncsa.illinois.edu/downloads/bd-base.ova

Users can switch between panes using Tmux commands. The panes are as follows: Fence (top), Clowder (middle-left), example extractor (middle-right),
Polyglot (middle-left), example convert (middle-right), and the BD CLI (bottom). In the bottom pane, users can run BD-CLI commands to interact with the
Brown Dog Data Transformation Service (username: bd, password: browndog):

bdcl1i@2f@9151958f8:~% bd -0 bmp -b http://fence:8080 sample.jpg
Brown Dog API URL: http://fence:8080

Key not available. Getting new key.

Username: fence

Password:

Key: 6e8e@e@d-09de-49a9-9a2a-96b50alobdla

Token expired or not available. Getting new token.
Token: 1219d9b4-311a-453c-86¢5-d61a2125d1bl
sample.bmp

bdcl1i@2f09151958f8:~% 1s

sample.bmp sample.jpg supervisor

bdcl1i@f95d84b@ecec:~$ bd -v -b http://fence:8080 sample.jpg
Brown Dog API URL: http://fence:8080

Key not available. Getting new key.

Username: fence

Password:

Key: be3c6ffd-6151-430d-8683-2e966c412c32

Token expired or not available. Getting new token.

Token: 234d2d20-abde-4e7b-83ba-ad@ae5b2a955

{"metadata. jsonld": [{"content": {"ocr_text": "EB BROWSER MOSAIC THE FIRST POPULAR FOR THE WORLD WIDE BY MARC AND
REESSEN BINA THE NATIONAL CENTER COMPUTING APPLICATIONS NCSM 1993 RELEASE TO THE PUBLIC INTERNET USERS EASY ACCES
S TO SOURCES OF INFORMATION Wyn HAVE TRANSFORMED THE INFORMATION UNIVERSITY OF"}, "@context": ["https://clowder.n
csa.illinois.edu/contexts/metadata.jsonld", {"ocr_text": "http://clowder.ncsa.illinois.edu/ncsa.image.ocr#ocr_tex
t"}], "created_at": "Tue Jun 27 15:02:40 UTC 2017", "agent": {"extractor_id": "https://clowder.ncsa.illinois.edu/
clowder/api/extractors/ncsa.image.ocr”, "@type": "cat:extractor", "name": "https://clowder.ncsa.illinois.edu/clow
der/api/extractors/ncsa.image.ocr"}3}], "versusmetadata": [], "tags": [], "filename": "sample.jpg", "technicalmeta
data": [], "id": "59527389e4b005e57b632f98"}

sample.json [0K]
Elapsed time: 8 seconds

CTRL-b <arrow key> will navigate panes.

Exit the bd-base session by typing CTRL-b then :kill-session.

NOTE: There is a .tmux.conf file included in bd-base. If you copy this file into your home directory before starting a bd-base session you will be able to
navigate panes via the mouse and end the session by typing CTRL-b then CTRL-c.

Extractors

Here we describe the process for taking a working piece of code and deploying it as a Brown Dog extractor. For simplicity, it is assumed that the method
can be invoked from a single call. In this example, we are using the python extractor wrapper and will invoke a python function. In a very similar fashion, a
method developed in a language other than python can be invoked using subprocess.

The main steps:

1. Wrap the tool for use as an extractor in Clowder (and through that Brown Dog)

2. Dockerize the extractor

3. Deploy the extractor

4. Add the extractor to the Tools Catalog
A few assumptions are that you have a tool that extracts some kind of metadata from a file or dataset and that you have installed Python, Git, and Docker
as well other specific software needed by your extractor (if any) on your computer.

1. Install pyClowder2

https://www.poftut.com/linux-tmux-tutorial-command-examples/
https://opensource.ncsa.illinois.edu/confluence/display/BD/BD+CLI
https://opensource.ncsa.illinois.edu/confluence/display/BD/Definitions#Definitions-clowder

Install pyClowder2, which is a Python library that helps to easily communicate with Clowder - the backend service of Brown Dog which handles extractions.
The advantage of using this library is that it manages all communications with Clowder and RabbitMQ (the distributed messaging bus) and the developer
doesn't have to take care of such tasks. Needless to say, an extractor can also be written in native Python without the use of pyClowder2, but it could be
more

pip install --upgrade pip
pip install -r https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/ repos/pycl owder2/raw requirenents
txt git+https://opensource.ncsa.illinois.edu/bitbucket/scnicats/pyclowder2.git

2. Get Your Code Together

We have developed a template extractor written in Python. It is a simple word count extractor that counts lines, words, and characters in a text file. Clone
the template extractor and rename the directory to an appropriate name that reflects the purpose of your extractor.

git clone https://opensource.ncsa.illinois.edu/bitbucket/scn bd/extractors-tenplate.git
nv extractors-tenplate/ <your_extractor_nane>
cd <your _extractor_name>

Make changes to extractors.py (main program). Consider the process_file method as the main method of an extractor and accordingly it needs to contain
the main logic. You can call other methods in your python code from this method after importing necessary modules into this file.

#
Process the file and upload the results
def process_file{parameters):

global extractorName

inputfile = parameters['inputfile']

Call word count command
result = subprocess.check_output(['wc', inputfile], stderr=subprocess.STDOUT)
{lines, words, characters, filename) = result.split{)
Context url
context_url = 'https://clowder.ncsa.illinois.edu/contexts/metadata. jsonld’
Store results as metadata
metadata = %
{
‘@context': [
context_url, {
'lines': 'http://clowder.ncsa.illinois.edu/' + extractorMame + '#lines',
'words': 'http://clowder.ncsa.illinois.edu/' + extractorName + '#words',
'‘characters': 'http://clowder.ncsa.illinois.edu/' + extractorMame + '#characters'
ks
1.
'attachedTo': {
‘resourceType': 'file', 'id': parameters[“fileid"]
}r
‘agent': {
'@type': 'cat:extractor’,
‘extractor_id': 'https://clowder.ncsa.illinois.edu/clowder/apifextractors/' + extractoriame
I
'content': {
'lines': lines,
'words': words,
‘characters': characters
}
}
print metadata
Upload metadata
extractors.upload_file_metadata_jsonld{mdata=metadata, parameters=parameters)

3. Edit extractor_info.json

https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/

This file contains information about the extractor in JSON-LD format. Update all relevant fields as needed.

1 {

2 "@context": "http://clowder.ncsa.illinois.edu/contexts/extractors. jsonld",

3 "name" :

4 "version":

5 "description™: |["Brown Dog template extractor,]

6 "auther": ['Rob Kooper <kooper@illinois.edu=",]

7 "contributors™: [J'Gregory Jansen <jansengumd.edu=", "Sandeep Puthanveetil Satheesan <sandeeps@illinois.edu="},
8 "contexts": [,

9 "repository": {"repType": "replri*: |'https:Nopensource.ncsa.iuinois.edu:’bitbucketfscmfbd:’extractors—tempLate.git“},
10 "external_services": [1,

11 "dependencies": [],

12 "pibtex": []

13}

4. Configuration Parameters

Extractors obtain the configuration details required to connect to RabbitMQ, Clowder, etc., either from command-line arguments or environment variables.
If you look at the Dockerfile inside the termplate extractor directory you can see some of the environment variables being set. For the purpose of running
your extractor using BD Development Base, you DO NOT have to change anything.

Note: The remaining part of this section is relevant ONLY if you want to run your extractor against another production instance at some other location.
Otherwise, you can skip and continue reading the next section.

If you are planning to run your extractor using Docker, you will need to modify the Dockerfile to set the environment variables as required.

Setup environment variables. These are passed into the container. You can change

these to your setup. If RABBITMQ URT is not set, it will try and use the rabbitmg

server that is linked into the container. MAIN SCRIFT is set to the script to be

executed by entrypoint.sh. REGISTRATION ENDPOINTS should point to a central clowder

instance, for example it could be https://clowder.ncsa.illinois.edu/clowder/api/extractors?key=secretKey

H W O kR W

ENV RABBITMQ URI="" \
RABBITMOQ_ EXCHANGE="clowder" \
RABBITMQ_QUEUE="ncsa.wordcount" %
REGISTRATION_ENDPOINTS="https://clowder.ncsa.illinois.edu/extractors” \
MATN SCRIPT="wordcount.py"

Otherwise, if you run your extractor as a standalone program (outside of Docker), you will need to set the relevant command-line arguments. You can get a
list of these parameters by running your extractor with the help option (-h, --help).

bd@Ebd-base: $./wordcount.py -h
usage: wordcount.py [-h] [-—-connector [{RabbitMQ,HPC,Locall}]]
[--logging [LOGGING]] [--num [NUM]]
[-—pickle [HPC_PICKLEFILE [HPC_PICKLEFILE eerl]]
[--register [REGSTRATION ENDPOINTS]]
[--rabbitmgURI [RABBITMQ URI]]
[--rabbitmgQUEUE [RABBITM) QUEUENAME]]
[--rabbitmgoExchange [RABBITMQ EXCHANGE]]
[--mounts MOUNTED PATHS]
[-—input-file-path INPUT FILE PATH]
[-—output-file-path OUTPUT FILE PATH] [--s3slignore]
[--version] [--no-bind]

WordCount extractor. Counts the number of characters, words and lines in the
text file that was uploaded.

opticnal arguments:
-h, =--help show this help message and exit
-—connector [{RabbitMQ,HPC,Local}], -c [{RabbitMQ,HPC,Local}]
connector to use (default=RabbitMO)
--logging [LOGGING], -1 [LOGGING]
file or url or logging coonfiguration (default=None)
--num [NUM], -n [NUM]
number of parallel instances (default=l)
--pickle [HPC PICKLEFILE [HPC PICKLEFILE ...]]
pickle file that needs to be processed (only needed
for HEC)
--register [REGSTRRTIGN_ENDPOINI‘S], -r [REGSTRATICFN_ENDPGINI‘S]
Clowder registration URL (default=)
--rabbitmqURI [RABBITMQ URI]
rabbitM) URI
(default=amgp://guest:guest@127.0.0.1/%2f)
—-rabbitmgQUEUE [RABBITM) QUEUENAME]
rabbitM) queue name (default=ncsa.wordcount)
—-—rabbitmgExchange [RABBITMQ EXCHANGE]
rabbitM) exchange (default=clowder}
--mounts MOUNTED PATHS, -m MOUNTED PATHS
dictionary of {'remote path':'local path'} mount
mappings
-—input-file-path INPUT FILE PATH, -ifp INPUT FILE PATH
Full path to local input file to be processed (used by
Big Data feature)
——output-file-path QUTPUT_FILE PATH, -ofp OUTPUT FILE PATH
Full path to local output JSON file to store metadata
(used by Big Data feature)
--gslignore, -s should SSL certificates be ignores
--version show program's version number and exit
--no-bind instance will bind itself to RabbitMJ by name but NOT

5. Edit the Dockerfile

Update the Dockerfile to install your software dependencies, provide necessary instructions in Dockerfile using the RUN command. You will need to add a
line in Dockerfile to switch to the root user (USER r oot) for getting proper permissions. For e.g., to install IméageMagick package using apt-get, add the
following commands to Dockerfile:

USER r oot
RUN apt-get update && apt-get install -y inagenmagi ck

6. Test the Extractor

You can test your extractor as follows:

docker build -t <your_extractor_name> .
docker run -it --link browndog_clowder_1 --1ink browndog_rabbitng_1:rabbitng <your_extractor_nanme>

You should see the following in the terminal. This means that the extractor is running and waiting for messages:

I NFO . pycl owder.extractors - Waiting for nessages. To exit press CTRL+C

Converters

Here we described the process for taking a working piece of code (an application, library, other service, etc) and deploying it as a Brown Dog converter. In
this example, we describe the creation of a converter using the popular image converter tool, ImageMagick.

1. Get Your Code Together

We have developed a template converter. It is a simple image converter that converts between different image formats using ImageMagick tool. Clone the
template converter and rename the directory to an appropriate name that reflects the purpose of your converter

git clone https://opensource.ncsa.illinois.edu/bitbucket/scn bd/convertors-tenplate.git
nv convertors-tenplate/ <your_converter_nane>
cd <your_converter_name>

Rename and edit ImageMagick_convert.sh script to wrap your conversion tool. This script file should be named in the format <alias>_convert.
<script_type>. Here <alias> needs to be replaced by the name of the conversion tool with which the converter registers with Polyglot and <script_type>
needs to be replaced by the extension for the type of script this wrapper is written in. Polyglot currently supports scripts written in Python, Bash, R,
AutoHotKey, AutolT, and Sikuli (e.g. *.py, *.sh, etc.). For the sake of ease of explanation, we will rename the script file as MyTool_convert.sh. This script
accepts three parameters:

1. Full path to input file
2. Full path to output file (including filename)
3. Full local path to available scratch space (optional)

This script will be used by the Software Server to run the tool and carry out any requested conversions. The example script ImageMagick_convert.sh that
uses ImageMagick tool to convert images between different formats is shown below. The conversion script follows a specific header and is written as
comments:

. First line is the shebang line

. Second line contains the name of the converter followed by the version (if any)

. Third line refers to the type of the data that it can convert

. Fourth line contains a comma-separated list of the input file formats accepted by this converter

. Fifth line contains a comma-separated list of the output file formats that this converter can generate
. This is followed by the actual code that does conversion.

OO WNE

https://opensource.ncsa.illinois.edu/confluence/display/BD/Definitions#Definitions-polyglot
https://opensource.ncsa.illinois.edu/confluence/display/BD/Definitions#Definitions-softwareserver
https://en.wikipedia.org/wiki/Shebang_(Unix)

B! /bin/sh

#ImageMagick (v6.5.2)

#image

#bmp, dib, eps, fig, gif, ico, jpg, jpeg, jp2, pcd,
#bmp, dib, eps, gif, jpg, jpeg, jp2, pcd, pdf, pgm,

out_filename=$(basename "$2")
f '${output_filename##x*.}"

#0utput PGM files as ASCII
if ["soutput_format" = "pgm" 1; then
convert "$1" —compress none "%2"
else
convert "§1" "g2"
fi

2. Edit the Dockerfile

Modify the Dockerfile in the converter directory to replace ImageMagick with MyTool. Specifically change line numbers 11, 15, 16 and 17. You need to also
change other fields like maintainer and may need to add instructions to install any specific software required by your converter. For example, you can see
instruction to install ImageMagick software in the example Dockerfile:

Dockerfile

Create softwareserver for polyglot.
FROM ncsapol ygl ot/ pol ygl ot : devel op
MAI NTAI NER Rob Kooper <kooper @I 1inoi s. edu>

USER r oot
- install requirenents
- enabl e shellscripts to be scanned
- enabl e i magemagi ck conversion by adding to .aliases.txt
RUN apt-get update && apt-get -y install vimnano inmagenagi ck &% \
/bin/sed -i -e '"s/™M([*]*Scripts=\)/#\1/" -e 's/"#\(ShellScripts=\)/\1/" /home/ pol ygl ot/ pol ygl ot
/ Sof t war eServer. conf && \
echo "I mageMagi ck" > /home/ pol ygl ot/ pol ygl ot/scripts/sh/.aliases.txt

copy convert file to scripts/sh folder in container

this is done to keep cache so you can debug script easily

COPY | mageMagi ck_convert.sh / hone/ pol ygl ot/ pol ygl ot/ scri pts/sh/

RUN chown pol ygl ot /hon®e/ pol ygl ot/ pol ygl ot/ scri pts/sh/ I mageMagi ck_convert.sh && \
chmod +x / home/ pol ygl ot/ pol ygl ot/ scri pt s/ sh/ | mageMagi ck_convert. sh

back to pol ygl ot
C\VD ["softwareserver"]

Specifically, modify:

echo "I nmageMagi ck" > /home/ pol ygl ot/ pol ygl ot/ scripts/sh/.aliases.txt

to:

echo "MyTool " > /hone/ pol ygl ot/ pol ygl ot/ scripts/sh/.aliases.txt

modify:

COPY | mageMagi ck_convert.sh / hone/ pol ygl ot/ pol ygl ot/ scri pts/sh/

to:

COPY MyTool _convert.sh /home/ pol ygl ot/ pol ygl ot/ scripts/sh/

and modify:

RUN chown pol ygl ot /hone/ pol ygl ot/ pol ygl ot/ scri pts/sh/ | mageMagi ck_convert.sh && \
chnmod +x / home/ pol ygl ot/ pol ygl ot/ scri pt s/ sh/ | mageMagi ck_convert. sh

to:

RUN chown pol ygl ot /hone/ pol ygl ot/ pol ygl ot/ scripts/sh/ MyTool _convert.sh && \
chnod +x / home/ pol ygl ot/ pol ygl ot/ scri pts/sh/ MyTool _convert. sh

6. Test the Converter

You can test your converter as follows:

docker build -t nytool
docker run -it --link browndog_rabbitng_1:rabbitnmg nmytool

You should see the following in the terminal. This means that the converter is running and waiting for messages:

Avai | abl e Sof t war e:
| mageMagi ck (| mageMagi ck)

	Preparing Tools

