
New SQL for binning

Method 1: Group by extracted time component
Explanation of the SQL:
Overview
Limitation

Method 2: Group by pre-generated bins with join
Method 3: Group by pre-generated bins with filter for aggregate function
Method 4: Using aggregate function with "over" and "window" (not working yet)
Method 5: Using procedure function (PL/pgsql or PL/python)
Performance
Caching design
Trends region

Method 1: Group by extracted time component
This SQL statement is computing average of the bins which created by grouping the extracted time component

Explanation of the SQL:

"where" statement contains the filtering, it should include the stream_id (sensor_id), could include start time, end time, source

"group by" is to do the grouping, "by 1" meaning group by the first selection, i.e. extract(year from start_time) in this example. it can also by "by 1,2"....

"cast(data ->> 'temperature' as DOUBLE PRECISION)" is to find the 'temperature' in data and convert it to double format. Using the following SQL can
make it more responsive (just running once):

create or replace function cast_to_double(text) returns DOUBLE PRECISION as $$

begin
 -- Note the double casting to avoid infinite recursion.
 return cast($1::varchar as DOUBLE PRECISION);
exception
 when invalid_text_representation then
 return 0.0;
end;
$$ language plpgsql immutable;
create cast (text as DOUBLE PRECISION) with function cast_to_double(text);

"avg" is to get the average, it usually used alone with "group by", you can have sum, count.....

Overview

by returning the average of the datapoints, short the time for streaming.

then we just need to convert each SQL result to a json.

Limitation

Monthly, daily binning will not work. For example, it will group all "December" regardless of year.
Customized binning, such as water years, can not be used.

Method 2: Group by pre-generated bins with join
This SQL statement pre-generate bins using "generate_series()" and tstzrange type; then it joins with datapoints table and groups by bins

with bin as (
 select tstzrange(s, s+'1 year'::interval) as r
 from generate_series('2002-01-01 00:00:00-05'::timestamp, '2017-12-31 23:59:59-05'::timestamp, '1
year') as s
)
select
 bin.r,
 avg(cast(data->> 'pH' as DOUBLE PRECISION))
from datapoints
right join bin on datapoints.start_time <@ bin.r
where datapoints.stream_id = 1584
group by 1
order by 1;

Method 3: Group by pre-generated bins with filter for aggregate function
This SQL statement pre-generate bins using "generate_series()" and tstzrange type; then it uses filter with avg function instead of join

with bin as (
 select tstzrange(s, s+'1 year'::interval) as r
 from generate_series('2002-01-01 00:00:00-05'::timestamp, '2017-12-31 23:59:59-05'::timestamp, '1
year') as s
)
select
 bin.r,
 avg(cast(data->> 'pH' as DOUBLE PRECISION)) filter(where datapoints.start_time <@ bin.r)
from datapoints, bin
where datapoints.stream_id = 1584
group by 1
order by 1;

Method 4: Using aggregate function with "over" and "window" (not working
yet)
Jong Lee Looked into this option; but couldn't find a way to do it. may not understand the functionality.Jong Lee

Method 5: Using procedure function (PL/pgsql or PL/python)
TODO...

Performance
Tested with GLGT production database. Used the stream_id 1584 which has 987,384 datapoints. Used "explain analyze"

Method 1 Method 2 Method 3

Planning time 0.269 ms 0.259 ms 0.145 ms

Execution time 3069.059 ms 6029.105 ms 12008.801 ms

https://opensource.ncsa.illinois.edu/confluence/display/~jonglee
https://opensource.ncsa.illinois.edu/confluence/display/~jonglee

Caching design
If we store the count and sum of the values in addition to average, it becomes easy to update the bin with a new datapoint.

bins_year

sensor_id year field count sum average start_time end_time updated

12345 2003 temperature 120 8400.0 60.0

12345 2003 pH 120 240.0 2.0

are start/end times for bins actually useful for anything? there could be holes in between endpoints
store completeness by sensor /stream?

bins_month

sensor_id month year field count sum average start_time end_time updated

12345 6 2003 temperature 10 600.0 60.0

12345 6 2003 pH 10 20.0 2.0

bins_day

sensor_id day month year field count sum average start_time end_time updated

12345 13 6 2003 temperature 1 60.0 60.0

12345 13 6 2003 pH 1 2.0 2.0

bins_hour

sensor_id hour day month year field count sum average start_time end_time updated

12345 19 13 6 2003 temperature 1 60.0 60.0

12345 19 13 6 2003 pH 1 2.0 2.0

bins_special

sensor_id label field count sum average start_time end_time updated

12345 spring temperature 3 180.0 60.0 01/01/2003 03/31/2003

12345 spring pH 3 6.0 2.0 01/01/2003 03/31/2003

12345 spring pH 1 2.0 2.0 01/01/2003 01/31/2003

for bins_special, do we actually need count/sum/average here, or does it simply need a start/end time and an aggregation level (year/month/etc) that
defines the custom aggregation unit and use the bins_year, bins_month to populate?

for spring, we get monthly averages only within start/end time
for spring, we get yearly average only including months within start/end

bins_special (alt option)

label start_time end_time updated

spring Jan 1 Mar 31

spring Jan 1 Mar 31

if i want special bin by year, only consider points between start and end time.
if start/end time includes entire year, use bins_year
if < 1 year time span, aggregate month + day bins until you cover entire time span

if i want by months, include each month between start/end time
for complete months, use bins_month

for partial months, aggregate day bins until you cover entire time span

Other possible tables:

- do we need to cache this, or calculate from monthly bins? latter option suggested above.bins_season

do we need to cache this, or is it fast enough to calculate from yearly bins?bins_total -

I don't think we want cache table for water_year, for example, because that is specific to GLM/GLTG and not generic for clowder. We could use the month
caches to quickly calculate that on the fly.

When do we update cache tables?

cron job (hourly? 5 minutes?)
whenever new datapoint is added (at most 1 bin per table would need to be created or updated) - upsert

Trends region

	New SQL for binning

