
findOrCreate operation in Mongo
TERRA frequently encounters following situations:

two different extractors process two different files that belong in the same destination dataset, at the same instant
two different extractors process two different datasets that belong in the same destination collection, at the same instant

...both extractors query Clowder for the existence of the dataset/collection by name at the same time, and Clowder responds to both saying "does not
exist". Both extractors then create the dataset/collection and upload their data to it, and because Clowder does not enforce unique dataset/collection
names we end up with duplicate datasets/collections, each having part of the necessary data.

What we see in TERRA are two identical collections, one with e.g. 8000 datasets and the other with just 1 - they were both created at once, but for all
subsequent extractors the 8000 collection is the one returned and the other one is basically orphaned. I have a script we run periodically to identify these
duplicates and merge them and delete the leftover empty one, but this is not ideal.

Rob Kooper found this topic: https://stackoverflow.com/questions/16358857/mongodb-atomic-findorcreate-findone-insert-if-nonexistent-but-do-not-update
/16362833#16362833

Beginning with MongoDB 2.4, it's no longer necessary to rely on a unique index (or any other workaround) for atomic like findOrCreate
operations.

This is thanks to new to 2.4, which allows you to specify updates which should only happen when inserting documents.the operator$setOnInsert

This, combined with the option, means you can use to achieve an atomic -like operation.upsert findAndModify findOrCreate

db.collection.findAndModify({

query: { _id: "some potentially existing id" },

update: { $setOnInsert: { foo: "bar" } }, new: true, // return new doc if one is upserted

upsert: true // insert the document if it does not exist })

As only affects documents being inserted, if an existing document is found, no modification will occur. If no document exists, it will $setOnInsert
upsert one with the specified _id, then perform the insert only set. In both cases, the document is returned.

https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/

https://docs.mongodb.com/manual/reference/operator/update/setOnInsert/#op._S_setOnInsert

In our case I think pseudocode would be:

query for dataset/collection with name exactly matching NEW_NAME
in update clause, $setOnInsert will be the creation parameters (name, agent, parent/child relationships, etc) and these are only applied if the
entity is not already found - a new object will be created with these parameters
upsert: true will create the new object if it isn't found
new: true will return the new ID if it is created
otherwise, existing object is returned in query as normal

I think the race condition still exists here but because there's no call/response across 2 calls to Clowder API (before it was 1) does it exist? 2) no - create)
the window for collisions is much smaller, like the same microsecond.

I also note this comment from SO thread:

One needs to be careful here, though. This only works if the selector of the findAndModify/findOneAndUpdate/updateOne uniquely identifies one
document by _id. Otherwise the upsert is split up on the server into a query and an update/insert. The update will still be atomic. But the query and
the update together will not be executed atomically.

https://opensource.ncsa.illinois.edu/confluence/display/~kooper
https://stackoverflow.com/questions/16358857/mongodb-atomic-findorcreate-findone-insert-if-nonexistent-but-do-not-update/16362833#16362833
https://stackoverflow.com/questions/16358857/mongodb-atomic-findorcreate-findone-insert-if-nonexistent-but-do-not-update/16362833#16362833
http://docs.mongodb.org/manual/reference/operator/setOnInsert/#op._S_setOnInsert
https://docs.mongodb.com/manual/reference/method/db.collection.findAndModify/
https://docs.mongodb.com/manual/reference/operator/update/setOnInsert/#op._S_setOnInsert

	findOrCreate operation in Mongo

