
Encrypting Kubernetes Secrets with Vault

Introduction
Interactive Tutorials for Docker
Interactive Tutorials for Kubernetes
What are Secrets?
Sounds great... what's the problem?
What is Vault and how does it solve the problem?

Setup
Helm Install (recommended)

Verify that Vault is Running
Managing the Vault Server
Unsealing the Vault

Local Install
Learning the Basics

Storing and Retrieving Secrets
Working with Secrets Engines
Managing Users and Policies

Vault Agent for Kubernetes
Test That it Works
Vault Agent Auto-Auth

Configuring the Agent
Create a Consul Template
Create a ConfigMap
Verification

Introduction
This document assumes basic familiarity with running using and .containers Docker Kubernetes

Interactive Tutorials for Docker

https://www.katacoda.com/courses/docker
https://training.play-with-docker.com/
https://learndocker.online/demo

Interactive Tutorials for Kubernetes

https://www.katacoda.com/courses/kubernetes
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetesbootcamp.github.io/kubernetes-bootcamp/
https://labs.play-with-k8s.com/

What are Secrets?

Sounds great... what's the problem?

What is Vault and how does it solve the problem?

Setup
Vault can run locally on your machine using , or it can be run directly inside of your Kubernetes cluster using the .the binaryvault Vault Helm Chart

NOTE: Even if you plan on using the Helm deployment method, you may want to download and configure the binary anyway as it can be helpful for vault
debugging or for checking on your Vault's status.

Helm Install (recommended)

Assuming you have a Kubernetes cluster up and running with Helm installed and configured, you need only run the following commands:

https://www.docker.com/resources/what-container
https://www.docker.com/why-docker
https://kubernetes.io/
https://www.katacoda.com/courses/docker
https://training.play-with-docker.com/
https://learndocker.online/demo
https://www.katacoda.com/courses/kubernetes
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetesbootcamp.github.io/kubernetes-bootcamp/
https://labs.play-with-k8s.com/
https://www.vaultproject.io/downloads.html
https://www.vaultproject.io/docs/platform/k8s/run.html

Clone the chart repo
$ git clone https://github.com/hashicorp/vault-helm.git
$ cd vault-helm

Checkout a tagged version
$ git checkout v0.1.2

Run Helm
$ helm install --name vault .
...

NOTE: You can pass the flag to to simply print our the resources that will be created, instead of actually triggering their --dry-run helm install
creation.

Verify that Vault is Running

You should now have a sealed vault running. You should see something like the following in the logs:

$ kubectl logs -f vault-0
==> Vault server configuration:

 Api Address: http://10.37.0.7:8200
 Cgo: disabled
 Cluster Address: https://10.37.0.7:8201
 Listener 1: tcp (addr: "[::]:8200", cluster address: "[::]:8201", max_request_duration: "1m30s",
max_request_size: "33554432", tls: "disabled")
 Log Level: info
 Mlock: supported: true, enabled: true
 Storage: file
 Version: Vault v1.2.2

==> Vault server started! Log data will stream in below:

2019-11-05T19:42:37.448Z [INFO] core: seal configuration missing, not initialized
2019-11-05T19:42:40.439Z [INFO] core: seal configuration missing, not initialized
2019-11-05T19:42:43.369Z [INFO] core: seal configuration missing, not initialized
2019-11-05T19:42:46.420Z [INFO] core: seal configuration missing, not initialized
2019-11-05T19:42:49.215Z [INFO] core: seal configuration missing, not initialized

Managing the Vault Server

You should then be able to open a using to the Vault pod:port-forward kubectl

$ kubectl port-forward vault-0 8200:8200

As long as this port-forward is running, navigating your browser to should allow you to view the Vault UI.http://localhost:8200

Similarly, pointing your binary at over the port-forward will allow you to run to view the cluster status.vault http://localhost:8200 vault status

If you just need to run the command-line tool, you could choose instead to into the vault pod to run the command there:vault kubectl exec

$ kubectl exec -it vault-0 -- vault status

NOTE: For larger Vault cluster, may be preferential.configuring Vault to be exposed via a Kubernetes Service

Unsealing the Vault

By default, the Helm chart starts the Vault in a and uninitialized state. To use the vault you will first need to initialize it, then unseal it.Sealed

Initialization will create the keys needed for unsealing. SAVE THESE KEYS SOMEWHERE SAFE!

http://localhost:8200
http://localhost:8200
https://www.vaultproject.io/docs/platform/k8s/helm.html#v-ui

$ kubectl exec -it vault-0 -- vault operator init
Unseal Key 1: qGDqGX13Sy/G6E+ZuQZ9DvhoFV7PDYfpPDO7uv1ox1qI
Unseal Key 2: EFfPzYkeowIZRqVoV2Dg9SeQmfj0Hi33CBjAy2Zq1T/9
Unseal Key 3: j13UH+mdrOE+3bwBVOdv/YUKjTyrSNRDUaZykx7aFQRv
Unseal Key 4: mwA47fXNmdv8u2nXL8s2poi1oqjfGNPNMc6aGG5j1S2m
Unseal Key 5: 0TQ42RgTH+xiKguZiIsg5ttrGuZ5gy3xAqY7G6QjRns4

Initial Root Token: s.JyaDk0IiYveqHiXJAmhdJ9Es

Vault initialized with 5 key shares and a key threshold of 3. Please securely
distribute the key shares printed above. When the Vault is re-sealed,
restarted, or stopped, you must supply at least 3 of these keys to unseal it
before it can start servicing requests.

Vault does not store the generated master key. Without at least 3 key to
reconstruct the master key, Vault will remain permanently sealed!

It is possible to generate new unseal keys, provided you have a quorum of
existing unseal keys shares. See "vault operator rekey" for more information.

Now that you have the keys, you can unseal the vault!

As described in the output above, you will need to enter 3 of the 5 unseal keys to successfully unseal the Vault:

$ kubectl exec -it vault-0 -- vault operator unseal
Unseal Key (will be hidden): <paste-from-above>
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed true <---- Sealed
Total Shares 5
Threshold 3
Unseal Progress 1/3 <----
Unseal Nonce 0ed7cb42-66ad-63b2-fb42-36410f93b6b1
Version 1.2.2
HA Enabled false

$ kubectl exec -it vault-0 -- vault operator unseal
Unseal Key (will be hidden): <paste-from-above>
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed true <---- Sealed
Total Shares 5
Threshold 3
Unseal Progress 2/3 <----
Unseal Nonce 0ed7cb42-66ad-63b2-fb42-36410f93b6b1
Version 1.2.2
HA Enabled false

$ kubectl exec -it vault-0 -- vault operator unseal
Unseal Key (will be hidden): <paste-from-above>
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed false <---- Unsealed
Total Shares 5
Threshold 3
Version 1.2.2
Cluster Name vault-cluster-0959e8a7
Cluster ID 60657f4c-55fb-0bb5-d511-9dc9e32f5eb6
HA Enabled false

1.
2.
3.
4.

Check back on the logs to see the Vault initialized and unsealed:

2019-11-05T20:09:13.461Z [INFO] core: seal configuration missing, not initialized
2019-11-05T20:09:16.399Z [INFO] core: seal configuration missing, not initialized
2019-11-05T20:09:19.344Z [INFO] core: seal configuration missing, not initialized
2019-11-05T20:09:22.511Z [INFO] core: seal configuration missing, not initialized
2019-11-05T20:09:23.338Z [INFO] core: security barrier not initialized
2019-11-05T20:09:23.539Z [INFO] core: security barrier initialized: shares=5 threshold=3
2019-11-05T20:09:23.748Z [INFO] core: post-unseal setup starting
2019-11-05T20:09:23.849Z [INFO] core: loaded wrapping token key
2019-11-05T20:09:23.849Z [INFO] core: successfully setup plugin catalog: plugin-directory=
2019-11-05T20:09:23.850Z [INFO] core: no mounts; adding default mount table
2019-11-05T20:09:23.988Z [INFO] core: successfully mounted backend: type=cubbyhole path=cubbyhole/
2019-11-05T20:09:23.989Z [INFO] core: successfully mounted backend: type=system path=sys/
2019-11-05T20:09:23.990Z [INFO] core: successfully mounted backend: type=identity path=identity/
2019-11-05T20:09:24.553Z [INFO] core: successfully enabled credential backend: type=token path=token/
2019-11-05T20:09:24.553Z [INFO] core: restoring leases
2019-11-05T20:09:24.553Z [INFO] rollback: starting rollback manager
2019-11-05T20:09:24.556Z [INFO] expiration: lease restore complete
2019-11-05T20:09:24.661Z [INFO] identity: entities restored
2019-11-05T20:09:24.662Z [INFO] identity: groups restored
2019-11-05T20:09:24.662Z [INFO] core: post-unseal setup complete
2019-11-05T20:09:24.966Z [INFO] core: root token generated
2019-11-05T20:09:24.966Z [INFO] core: pre-seal teardown starting
2019-11-05T20:09:24.966Z [INFO] rollback: stopping rollback manager
2019-11-05T20:09:24.966Z [INFO] core: pre-seal teardown complete
2019-11-05T20:09:59.450Z [INFO] core.cluster-listener: starting listener: listener_address=[::]:8201
2019-11-05T20:09:59.450Z [INFO] core.cluster-listener: serving cluster requests: cluster_listen_address=[::]:
8201
2019-11-05T20:09:59.454Z [INFO] core: post-unseal setup starting
2019-11-05T20:09:59.457Z [INFO] core: loaded wrapping token key
2019-11-05T20:09:59.457Z [INFO] core: successfully setup plugin catalog: plugin-directory=
2019-11-05T20:09:59.463Z [INFO] core: successfully mounted backend: type=system path=sys/
2019-11-05T20:09:59.464Z [INFO] core: successfully mounted backend: type=identity path=identity/
2019-11-05T20:09:59.464Z [INFO] core: successfully mounted backend: type=cubbyhole path=cubbyhole/
2019-11-05T20:09:59.480Z [INFO] core: successfully enabled credential backend: type=token path=token/
2019-11-05T20:09:59.480Z [INFO] core: restoring leases
2019-11-05T20:09:59.480Z [INFO] rollback: starting rollback manager
2019-11-05T20:09:59.481Z [INFO] expiration: lease restore complete
2019-11-05T20:09:59.485Z [INFO] identity: entities restored
2019-11-05T20:09:59.485Z [INFO] identity: groups restored
2019-11-05T20:09:59.485Z [INFO] core: post-unseal setup complete
2019-11-05T20:09:59.485Z [INFO] core: vault is unsealed

You are now ready to store and retrieve secrets from the Vault! Let's try manually storing some secrets to learn the basics.

Local Install

A local install has a few more manual steps to get things running on Kubernetes.

Download the vault binary and run .vault server -dev

NOTE: For production setups, leave off the flag. Developer mode is far less secure, providing an unsealed Vault by default and requiring less keys -dev
to unseal in the future.

WARNING! dev mode is enabled! In this mode, Vault runs entirely in-memory
and starts unsealed with a single unseal key. The root token is already
authenticated to the CLI, so you can immediately begin using Vault.

Once the dev server is up and running, that you do the followingMAKE SURE

Launch a new terminal session.
Copy and run the command from the terminal output. This will configure the Vault client to talk to our dev server. export VAULT_ADDR ...
Save the unseal key somewhere. Don't worry about to save this securely. For now, just save it anywhere. how
Copy the generated value and set is as environment variable: Root Token VAULT_DEV_ROOT_TOKEN_ID

4.

$ export VAULT_DEV_ROOT_TOKEN_ID="s.SomeLongStringThatIsUniqueToYourVault"

You now have a running/unsealed dev Vault. Let's try manually storing some secrets to learn the basics.

Learning the Basics

Storing and Retrieving Secrets

Vault offers an excellent "first steps" tutorial that walks you through reading and writing secrets to the Vault: https://learn.hashicorp.com/vault/getting-started
/first-secret

You can one or more key-value pairs to a Vault secret using the command:put vault kv put

$ vault kv put secret/hello foo=world exciting=yes
Key Value
--- -----
created_time 2019-10-30T16:42:05.269502Z
deletion_time n/a
destroyed false
version 2

You can retrieve these values again using :vault kv get

$ vault kv get secret/hello
====== Metadata ======
Key Value
--- -----
created_time 2019-10-30T16:42:05.269502Z
deletion_time n/a
destroyed false
version 2

=== Data ===
Key Value
--- -----
excited yes
foo world

Working with Secrets Engines

See https://learn.hashicorp.com/vault/getting-started/secrets-engines

Our above examples worked fine for , but what if we attempt to change this to ?secret/hello someotherpath/hello

$ vault kv put someotherpath/hello foo=world
Error making API request.

URL: GET http://127.0.0.1:8200/v1/sys/internal/ui/mounts/someotherpath/hello
Code: 403. Errors:

* preflight capability check returned 403, please ensure client's policies grant access to path "someotherpath
/hello/"

This is because we don't have a enabled that matches . A secrets engine is Vault's way of writing these secrets to secrets engine someotherpath/
the underlying filesystem. This way, we don't need to worry about proper file formats or manually ingesting values.

To see all of the currently-enabled secrets engines, you can use :vault secrets list

https://learn.hashicorp.com/vault/getting-started/first-secret
https://learn.hashicorp.com/vault/getting-started/first-secret
https://learn.hashicorp.com/vault/getting-started/secrets-engines

$ vault secrets list
Path Type Accessor Description
---- ---- -------- -----------
cubbyhole/ cubbyhole cubbyhole_d1212f15 per-token private secret storage
identity/ identity identity_910c214b identity store
secret/ kv kv_19353bba key/value secret storage
sys/ system system_c58ea5a1 system endpoints used for control, policy and debugging

To enable a new secrets engine:

$ vault secrets enable -path=kv/ kv
Success! Enabled the kv secrets engine at: kv/

$ vault secrets list
Path Type Accessor Description
---- ---- -------- -----------
cubbyhole/ cubbyhole cubbyhole_d1212f15 per-token private secret storage
identity/ identity identity_910c214b identity store
kv/ kv kv_aa513af3 n/a
secret/ kv kv_19353bba key/value secret storage
sys/ system system_c58ea5a1 system endpoints used for control, policy and debugging

We are now able to store values prefixed with or whatever path was provided when enabling the secrets engine:kv/

$ vault write kv/my-secret value="s3c(eT"
Success! Data written to: kv/my-secret

$ vault write kv/hello target=world
Success! Data written to: kv/hello

$ vault write kv/airplane type=boeing class=787
Success! Data written to: kv/airplane

$ vault list kv
Keys

airplane
hello
my-secret

We can disable a secrets engine using a similar syntax:

$ vault secrets disable kv/
Success! Disabled the secrets engine (if it existed) at: kv/

For a list of all available secrets engines, please see the .Vault documentation regarding Secrets Engines

Managing Users and Policies

See https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s#step-2-configure-kubernetes-auth-method

By default, you are authenticated into the dev cluster as the admin user - this user can access all paths regardless of the policies set.

The admin defines a set of paths that other users should be able to access and assigns a list of (verbs) that a user is allowed to perform capabilities
on that path.

Create a read-only policy for a particular key or set of keys and write some test keys to it as the admin user:

https://www.vaultproject.io/docs/secrets/index.html#secrets-engines
https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s#step-2-configure-kubernetes-auth-method

Create a policy file, myapp-kv-ro.hcl
$ tee myapp-kv-ro.hcl <<EOF
If working with K/V v1
path "secret/myapp/*" {
 capabilities = ["read", "list"]
}

If working with K/V v2
path "secret/data/myapp/*" {
 capabilities = ["read", "list"]
}
EOF

Create a policy named myapp-kv-ro
$ vault policy write myapp-kv-ro myapp-kv-ro.hcl

Write some test keys as the admin user
$ vault kv put secret/myapp/config username='appuser' \
 password='suP3rsec(et!' \
 ttl='30s'

Enable the auth method, then create and login as a new test user:userpass

Enable userpass auth method
$ vault auth enable userpass

Create a user named "test-user"
$ vault write auth/userpass/users/test-user \
 password=training \
 policies=myapp-kv-ro

Login as test-user
$ vault login -method=userpass \
 username=test-user \
 password=training

We can now test that our policy is working as we have defined. Try to read from, then write to and you should see that your secret/myapp/config
request is denied with a 403 - this means that our policy is working correctly!

Verify that test-user can read secret/myapp path, as policy has written
$ vault kv get secret/myapp/config
====== Metadata ======
Key Value
--- -----
created_time 2019-10-29T20:52:41.15247Z
deletion_time n/a
destroyed false
version 1

====== Data ======
Key Value
--- -----
password suP3rsec(et!
ttl 30s
username appuser

Verify that test-user CANNOT write secret/myapp path, as policy has written
$ vault kv put secret/myapp/config another=one
Error writing data to secret/data/myapp/config: Error making API request.

URL: PUT http://127.0.0.1:8200/v1/secret/data/myapp/config
Code: 403. Errors:

* 1 error occurred:
 * permission denied

After testing the policy, you will need to log back into the privileged user to configure Kubernetes auth:

Log back in using the token you saved from Vault's startup logs
$ vault login ${VAULT_DEV_ROOT_TOKEN_ID}

Vault Agent for Kubernetes
The next step is to configure Vault's Kubernetes authentication method.

See https://www.vaultproject.io/docs/auth/kubernetes.html#configuration

See https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s

First, configure a ServiceAccount in Kubernetes that Vault will use to authenticate:

Create a service account called 'vault-auth'
$ kubectl create serviceaccount vault-auth

Write a set of permissions for the service account
$ cat vault-auth-service-account.yml

 apiVersion: rbac.authorization.k8s.io/v1beta1
 kind: ClusterRoleBinding
 metadata:
 name: role-tokenreview-binding
 namespace: default
 roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:auth-delegator
 subjects:
 - kind: ServiceAccount
 name: vault-auth
 namespace: default

Update the vault-auth service account with the new permissions
$ kubectl apply --filename vault-auth-service-account.yml

If you are running locally, you will also need to point Vault at your Kubernetes cluster. In the Helm Chart case, this should already be done for you.

Set VAULT_SA_NAME to the service account you created earlier
$ export VAULT_SA_NAME=$(kubectl get sa vault-auth -o jsonpath="{.secrets[*]['name']}")

Set SA_JWT_TOKEN value to the service account JWT used to access the TokenReview API
$ export SA_JWT_TOKEN=$(kubectl get secret $VAULT_SA_NAME -o jsonpath="{.data.token}" | base64 --decode; echo)

Set SA_CA_CRT to the PEM encoded CA cert used to talk to Kubernetes API
$ export SA_CA_CRT=$(kubectl get secret $VAULT_SA_NAME -o jsonpath="{.data['ca\.crt']}" | base64 --decode; echo)

Set K8S_HOST to minikube or master IP address
$ export K8S_HOST=$(minikube ip)

Now we are ready to enable the Kubernetes auth method:

https://www.vaultproject.io/docs/auth/kubernetes.html#configuration
https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s

Enable the Kubernetes auth method at the default path ("auth/kubernetes")
$ vault auth enable kubernetes

Tell Vault how to communicate with the Kubernetes cluster
$ vault write auth/kubernetes/config \
 token_reviewer_jwt="$SA_JWT_TOKEN" \
 kubernetes_host="https://$K8S_HOST:8443" \
 kubernetes_ca_cert="$SA_CA_CRT"

Create a role named 'example' to map Kubernetes ServiceAccount to Vault policies and default token TTL
$ vault write auth/kubernetes/role/example \
 bound_service_account_names=vault-auth \
 bound_service_account_namespaces=default \
 policies=myapp-kv-ro \
 ttl=24h

Test That it Works

Run a simple pod:

$ kubectl run --generator=run-pod/v1 tmp --rm -i --tty --serviceaccount=vault-auth --image alpine:3.7

Once inside the container, install and :curl jq

/# apk update
/# apk add curl jq

Verify that you can communicate with the Vault cluster and you should see output similar to the following:

/# VAULT_ADDR=http://10.0.2.2:8200

/# curl -s $VAULT_ADDR/v1/sys/health | jq
{
 "initialized": true,
 "sealed": false,
 "standby": false,
 "performance_standby": false,
 "replication_performance_mode": "disabled",
 "replication_dr_mode": "disabled",
 "server_time_utc": 1543969628,
 "version": "1.0.0+ent",
 "cluster_name": "vault-cluster-e314942e",
 "cluster_id": "2b4f6213-d58f-0530-cf07-65ea467181f2"
}

NOTE: Be sure to set VAULT_ADDR to where your Vault server is running if it's NOT running locally.

Set KUBE_TOKEN to the service account token value:

/# KUBE_TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)
/# echo $KUBE_TOKEN

Now, test the auth method to ensure that you can authenticate with Vault:kubernetes

/# curl --request POST \
 --data '{"jwt": "'"$KUBE_TOKEN"'", "role": "example"}' \
 $VAULT_ADDR/v1/auth/kubernetes/login | jq
{
 ...
 "auth": {
 "client_token": "s.7cH83AFIdmXXYKsPsSbeESpp",
 "accessor": "8bmYWFW5HtwDHLAoxSiuMZRh",
 "policies": [
 "default",
 "myapp-kv-ro"
],
 "token_policies": [
 "default",
 "myapp-kv-ro"
],
 "metadata": {
 "role": "example",
 "service_account_name": "vault-auth",
 "service_account_namespace": "default",
 "service_account_secret_name": "vault-auth-token-vqqlp",
 "service_account_uid": "adaca842-f2a7-11e8-831e-080027b85b6a"
 },
 "lease_duration": 86400,
 "renewable": true,
 "entity_id": "2c4624f1-29d6-972a-fb27-729b50dd05e2",
 "token_type": "service"
 }
}

Notice that client_token is successfully generated and myapp-kv-ro policy is attached with the token. The metadata displays that its service
account name (service_account_name) is vault-auth.

Vault Agent Auto-Auth

See https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s#step-4-leverage-vault-agent-auto-auth

Configuring the Agent

Create a file called :vault-agent-config.hcl

exit_after_auth = true
pid_file = "/home/vault/pidfile"

auto_auth {
 method "kubernetes" {
 mount_path = "auth/kubernetes"
 config = {
 role = "example"
 }
 }

 sink "file" {
 config = {
 path = "/home/vault/.vault-token"
 }
 }
}

Notice that the Vault Agent Auto-Auth is configured to use the auth method enabled at the path on the Vault . kubernetes auth/kubernetes server
The Vault Agent will use the role to authenticate. example

The block specifies the location on disk where to write tokens. Vault Agent Auto-Auth can be configured multiple times if you want Vault Agent sink sink
to place the token into multiple locations. In this example, the is set to . sink /home/vault/.vault-token

Create a Consul Template

https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s#step-4-leverage-vault-agent-auto-auth

Vault uses Consul under the hood to persist its key-value pairs. Consul is a service mesh for Kubernetes that provides convenient ways to plug data into
running pods.

NOTE: Consul is outside of the scope of this document. For more about Consul, see https://medium.com/velotio-perspectives/a-practical-guide-to-
hashicorp-consul-part-1-5ee778a7fcf4

We can leverage Consul to create a called :template consul-template-config.hcl

vault {
 renew_token = false
 vault_agent_token_file = "/home/vault/.vault-token"
 retry {
 backoff = "1s"
 }
}

template {
 destination = "/etc/secrets/index.html"
 contents = <<EOH
 <html>
 <body>
 <p>Some secrets:</p>
 {{- with secret "secret/myapp/config" }}

 <pre>username: {{ .Data.username }}</pre>
 <pre>password: {{ .Data.password }}</pre>

 {{ end }}
 </body>
 </html>
 EOH
}

This template reads secrets at the secret/myapp/config path and set the username and password values.

If the path is enabled with secrets engine, the templatized expressions should be modified as follow (Line 15 through 18):NOTE: secret/ key/value v2

...
template {
 ...
 {{- with secret "secret/data/myapp/config?version=1" }}

 <pre>username: {{ .Data.data.username }}</pre>
 <pre>password: {{ .Data.data.password }}</pre>

 {{ end }}
 ...
}

Create a ConfigMap

Place the two files you just created into a new directory called and run the following commands to create a ConfigMap from them:./config-k8s

Create a ConfigMap called 'example-vault-agent-config'
$ kubectl create configmap example-vault-agent-config --from-file=./configs-k8s/

View the created ConfigMap
$ kubectl get configmap example-vault-agent-config -o yaml

Now create a pod spec named that mounts in the files from the ConfigMap and using the example-k8s-spec.yml examplevault-agent-config va
 ServiceAccount:ult-auth

apiVersion: v1
kind: Pod
metadata:

https://medium.com/velotio-perspectives/a-practical-guide-to-hashicorp-consul-part-1-5ee778a7fcf4
https://medium.com/velotio-perspectives/a-practical-guide-to-hashicorp-consul-part-1-5ee778a7fcf4
https://learn.hashicorp.com/vault/developer/sm-app-integration
https://www.vaultproject.io/docs/secrets/kv/kv-v2.html

 name: vault-agent-example
spec:
 serviceAccountName: vault-auth

 restartPolicy: Never

 volumes:
 - name: vault-token
 emptyDir:
 medium: Memory

 - name: config
 configMap:
 name: example-vault-agent-config
 items:
 - key: vault-agent-config.hcl
 path: vault-agent-config.hcl

 - key: consul-template-config.hcl
 path: consul-template-config.hcl

 - name: shared-data
 emptyDir: {}

 initContainers:
 # Vault container
 - name: vault-agent-auth
 image: vault

 volumeMounts:
 - name: config
 mountPath: /etc/vault
 - name: vault-token
 mountPath: /home/vault

 # This assumes Vault running on local host and K8s running in Minikube using VirtualBox
 env:
 - name: VAULT_ADDR
 value: http://10.0.2.2:8200

 # Run the Vault agent
 args:
 [
 "agent",
 "-config=/etc/vault/vault-agent-config.hcl",
 #"-log-level=debug",
]

 containers:
 # Consul Template container
 - name: consul-template
 image: hashicorp/consul-template:alpine
 imagePullPolicy: Always

 volumeMounts:
 - name: vault-token
 mountPath: /home/vault

 - name: config
 mountPath: /etc/consul-template

 - name: shared-data
 mountPath: /etc/secrets

 env:
 - name: HOME
 value: /home/vault

 - name: VAULT_ADDR
 value: http://10.0.2.2:8200

 # Consul-Template looks in $HOME/.vault-token, $VAULT_TOKEN, or -vault-token (via CLI)
 args:
 [
 "-config=/etc/consul-template/consul-template-config.hcl",
 #"-log-level=debug",
]

 # Nginx container
 - name: nginx-container
 image: nginx

 ports:
 - containerPort: 80

 volumeMounts:
 - name: shared-data
 mountPath: /usr/share/nginx/html

Execute the following command to create the vault-agent-example Pod:

$ kubectl apply -f example-k8s-spec.yml --record

 It will take a minute or so for the Pod to become fully up and running.

Verification

Open a port-forward so you can connect to the client from browser:

$ kubectl port-forward pod/vault-agent-example 8080:80

In a web browser, go to localhost:8080

Notice that the username and password values were successfully read from secret/myapp/config.

This proves that we are able to capture Vault values and automatically render them at container startup using Consul.

Open a shell to the consul-template container:

$ kubectl exec -it vault-agent-example --container consul-template sh

Remember that we set the Vault Agent's sink to be /home/vault/.vault-token. To view the token stored in the sink:

/# echo $(cat /home/vault/.vault-token)
s.7MQZzFZxUTBQMrtfy98wTGkZ

This proves that our Vault token is being properly written to the sink.

Even without integrating directly with Consul, this pattern would allow us to use the Vault token within the container to access a Vault's contents!

	Encrypting Kubernetes Secrets with Vault

