Encrypting Kubernetes Secrets with Vault

® [ntroduction
© Interactive Tutorials for Docker
O Interactive Tutorials for Kubernetes
© What are Secrets?
© Sounds great... what's the problem?
© What is Vault and how does it solve the problem?
® Setup
© Helm Install (recommended)
" Verify that Vault is Running
® Managing the Vault Server
® Unsealing the Vault
© Local Install
® Learning the Basics
O Storing and Retrieving Secrets
© Working with Secrets Engines
© Managing Users and Policies
® Vault Agent for Kubernetes
© Test That it Works
© Vault Agent Auto-Auth
® Configuring the Agent
= Create a Consul Template
= Create a ConfigMap
" Verification

Introduction

This document assumes basic familiarity with running containers using Docker and Kubernetes.

Interactive Tutorials for Docker

® https://www.katacoda.com/courses/docker
® https://training.play-with-docker.com/
® https://learndocker.online/demo

Interactive Tutorials for Kubernetes

https://www.katacoda.com/courses/kubernetes
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetesbootcamp.github.io/kubernetes-bootcamp/
https://labs.play-with-k8s.com/

What are Secrets?
Sounds great... what's the problem?

What is Vault and how does it solve the problem?

Setup

Vault can run locally on your machine using the vaul t binary, or it can be run directly inside of your Kubernetes cluster using the Vault Helm Chart.
NOTE: Even if you plan on using the Helm deployment method, you may want to download and configure the vaul t binary anyway as it can be helpful for
debugging or for checking on your Vault's status.

Helm Install (recommended)

Assuming you have a Kubernetes cluster up and running with Helm installed and configured, you need only run the following commands:

https://www.docker.com/resources/what-container
https://www.docker.com/why-docker
https://kubernetes.io/
https://www.katacoda.com/courses/docker
https://training.play-with-docker.com/
https://learndocker.online/demo
https://www.katacoda.com/courses/kubernetes
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetesbootcamp.github.io/kubernetes-bootcamp/
https://labs.play-with-k8s.com/
https://www.vaultproject.io/downloads.html
https://www.vaultproject.io/docs/platform/k8s/run.html

H*

Clone the chart repo
git clone https://github. com hashicorp/vaul t-hel mgit
cd vault-helm

@ &+

Checkout a tagged version
$ git checkout v0.1.2

Run Hel m
$ helminstall --nanme vault

NOTE: You can pass the - -dry-run flag to hel m i nstal | to simply print our the resources that will be created, instead of actually triggering their
creation.

Verify that Vault is Running

You should now have a sealed vault running. You should see something like the following in the logs:

$ kubectl logs -f vault-0
==> Vault server configuration:

Api Address: http://10.37.0.7:8200
Cgo: disabl ed
Cluster Address: https://10.37.0.7:8201
Listener 1. tcp (addr: "[::]:8200", cluster address: "[::]:8201", max_request_duration: "1n80s",
max_request_si ze: "33554432", tls: "disabled")
Log Level: info
M ock: supported: true, enabled: true

Storage: file
Version: Vault v1.2.2

==> Vault server started! Log data will streamin bel ow

2019-11-05T19: 42: 37.448Z [INFQ core: seal configuration missing, not initialized
2019- 11-05T19: 42: 40.439Z [INFQ core: seal configuration missing, not initialized
2019-11-05T19: 42: 43.369Z [INFQ core: seal configuration mssing, not initialized

2019- 11-05T19: 42: 46.420Z [INFQ core: seal configuration missing, not initialized
2019- 11-05T19: 42: 49. 215Z [INFQ core: seal configuration missing, not initialized

Managing the Vault Server

You should then be able to open a port - f or war d using kubect | to the Vault pod:

$ kubect| port-forward vault-0 8200: 8200

As long as this port-forward is running, navigating your browser to http://localhost:8200 should allow you to view the Vault Ul.
Similarly, pointing your vaul t binary at http://localhost:8200 over the port-forward will allow you to run vaul t st at us to view the cluster status.

If you just need to run the vaul t command-line tool, you could choose instead to kubect| exec into the vault pod to run the command there:

$ kubect!l exec -it vault-0 -- vault status

NOTE: For larger Vault cluster, configuring Vault to be exposed via a Kubernetes Service may be preferential.

Unsealing the Vault
By default, the Helm chart starts the Vault in a Seal ed and uninitialized state. To use the vault you will first need to initialize it, then unseal it.

Initialization will create the keys needed for unsealing. SAVE THESE KEYS SOMEWHERE SAFE!

http://localhost:8200
http://localhost:8200
https://www.vaultproject.io/docs/platform/k8s/helm.html#v-ui

$ kubect| exec -it vault-0 -- vault operator init

Unseal Key 1: gGDqGX13Sy/ GBE+ZuQz9DvhoFV7PDYf pPDO7uvi1ox1ql

Unseal Key 2: EFfPzYkeow ZRqVoV2Dg9SeQnf j OHi 33CBj Ay2Zql1T/ 9
Unseal Key 3: j 13UH+nmdr OE+3bwBVQdv/ YUK] Tyr SNRDUaZy kx7aFQRv
Unseal Key 4: mwA47f XNndv8u2nXL8s2poi 1oqj f GNPNME6aGGhj 1S2m

Unseal Key 5: O0TQ42RgTH+xi KguZi | sg5ttr Guz5gy3xAqY7G6Q Rns4
Initial Root Token: s.JyaDkOli YveqH XJAnrhdJ9Es
Vault initialized with 5 key shares and a key threshold of 3. Please securely

When the Vault is re-sealed,
| east 3 of these keys to unseal

distribute the key shares printed above.
restarted, or stopped, you nust supply at
before it can start servicing requests.

it
Vault does not store the generated master key. Wthout at least 3 key to
reconstruct the master key, Vault will remain permanently seal ed!

It is possible to generate new unseal keys, provided you have a quorum of

exi sting unseal keys shares. See "vault operator rekey" for nore information.

Now that you have the keys, you can unseal the vault!

As described in the output above, you will need to enter 3 of the 5 unseal keys to successfully unseal the Vault:

$ kubect!l exec -it vault-0 -- vault operator unseal
Unseal Key (will be hidden): <paste-from above>
Key Val ue

Seal Type shamir

Initialized true

Seal ed true <---- Sealed

Total Shares 5

Threshol d 3

Unseal Progress 1/ 3 <----

Unseal Nonce Oed7cb42- 66ad- 63b2-f b42- 36410f 93b6b1
Ver si on 1.2.2

HA Enabl ed fal se

$ kubect| exec -it vault-0 -- vault operator unseal
Unseal Key (will be hidden): <paste-from above>
Key Val ue

Seal Type shami r

Initialized true

Seal ed true <---- Seal ed

Total Shares 5

Threshol d 3

Unseal Progress 2/ 3 <----

Unseal Nonce Oed7cb42- 66ad- 63b2-f b42- 36410f 93b6b1
Ver si on 1.2.2

HA Enabl ed fal se

$ kubect| exec -it vault-0 -- vault operator unseal
Unseal Key (will be hidden): <paste-from above>
Key Val ue

Seal Type shamir

Initialized true

Seal ed fal se <---- Unseal ed

Total Shares 5

Thr eshol d 3

Ver si on 1.2.2

Cl uster Name vaul t - cl ust er-0959e8a7

Cluster ID 60657f 4c- 55f b- 0bb5- d511- 9dc9e32f 5eb6

HA Enabl ed

fal se

Check back on the logs to see the Vault initialized and unsealed:

2019- 11-05T20: 09: 13.461Z [INFQ core: seal configuration mssing, not initialized

2019-11-05T20: 09: 16.399Z [INFQ core: seal configuration missing, not initialized

2019-11-05T20: 09: 19.344Z [INFQ core: seal configuration mssing, not initialized

2019-11-05T20: 09: 22. 511Z [INFQ core: seal configuration missing, not initialized

2019- 11-05T20: 09: 23.338Z [INFQ core: security barrier not initialized

2019-11-05T20: 09: 23.539Z [INFQ core: security barrier initialized: shares=5 threshol d=3
2019-11-05T20: 09: 23. 748Z [INFQ core: post-unseal setup starting

2019- 11- 05T20: 09: 23.849Z [INFQ core: |oaded wrappi ng token key

2019-11-05T20: 09: 23.849Z [INFQ core: successfully setup plugin catal og: plugin-directory=

2019- 11-05T20: 09: 23.850Z [INFQ core: no nounts; adding default nmount table

2019-11-05T20: 09: 23.988Z [INFQ core: successfully nounted backend: type=cubbyhol e pat h=cubbyhol e/
2019-11- 05T20: 09: 23.989Z [INFQ core: successfully mounted backend: type=system path=sys/

2019- 11-05T20: 09: 23.990Z [INFQ core: successfully mounted backend: type=identity path=identity/
2019- 11-05T20: 09: 24.553Z [INFQ core: successfully enabl ed credential backend: type=token path=t oken/
2019- 11-05T20: 09: 24. 553Z [INFQ core: restoring | eases

2019-11- 05T20: 09: 24.553Z [INFQ roll back: starting rollback manager

2019-11-05T20: 09: 24. 556Z [INFQ expiration: |ease restore conplete

2019-11-05T20: 09: 24.661Z [INFQ identity: entities restored

2019-11-05T20: 09: 24. 662Z [INFQ identity: groups restored

2019- 11- 05T20: 09: 24. 662Z [INFQ core: post-unseal setup conplete

2019- 11-05T20: 09: 24. 966Z [I NFQ core: root token generated

2019- 11-05T20: 09: 24. 966Z [INFQ core: pre-seal teardown starting

2019- 11- 05T20: 09: 24. 966Z [INFQ rol | back: stopping roll back manager

2019- 11-05T20: 09: 24. 966Z [INFQ core: pre-seal teardown conplete

2019- 11- 05T20: 09: 59.450Z [INFQ core.cluster-listener: starting listener: l|listener_address=[::]:8201
2019- 11-05T20: 09: 59.450Z [INFQ core.cluster-listener: serving cluster requests: cluster_listen_address=[::]:
8201

2019- 11- 05T20: 09: 59. 454Z [INFQ core: post-unseal setup starting

2019- 11-05T20: 09: 59.457Z [INFQ core: |oaded w appi ng token key

2019- 11-05T20: 09: 59.457Z [INFQ core: successfully setup plugin catal og: plugin-directory=

2019- 11- 05T20: 09: 59. 463Z [INFQ core: successfully mounted backend: type=system path=sys/

2019- 11-05T20: 09: 59. 464Z [INFQ core: successfully nounted backend: type=identity path=identity/
2019-11-05T20: 09: 59. 464Z [INFQ core: successfully nounted backend: type=cubbyhol e pat h=cubbyhol e/
2019- 11-05T20: 09: 59.480Z [INFQ core: successfully enabled credential backend: type=token path=t oken/
2019- 11-05T20: 09: 59.480Z [INFQ core: restoring | eases

2019-11-05T20: 09: 59.480Z [INFQ rol |l back: starting rollback manager

2019- 11-05T20: 09: 59.481Z [INFQ expiration: |ease restore conplete

2019-11-05T20: 09: 59.485Z [INFQ identity: entities restored

2019-11- 05T20: 09: 59.485Z [INFQ] identity: groups restored

2019- 11-05T20: 09: 59. 485Z [INFQ core: post-unseal setup conplete

2019-11-05T20: 09: 59.485Z [INFQ core: vault is unsealed

You are now ready to store and retrieve secrets from the Vault! Let's try manually storing some secrets to learn the basics.

Local Install
A local install has a few more manual steps to get things running on Kubernetes.
Download the vault binary and run vaul t server -dev.

NOTE: For production setups, leave off the - dev flag. Developer mode is far less secure, providing an unsealed Vault by default and requiring less keys
to unseal in the future.

WARNI NG dev node is enabled! In this node, Vault runs entirely in-nmenory
and starts unsealed with a single unseal key. The root token is already
aut henticated to the CLI, so you can imediately begin using Vault.

Once the dev server is up and running, MAKE SURE that you do the following

. Launch a new terminal session.

. Copy and run the export VAULT_ADDR ... command from the terminal output. This will configure the Vault client to talk to our dev server.
. Save the unseal key somewhere. Don't worry about how to save this securely. For now, just save it anywhere.

. Copy the generated Root Token value and set is as VAULT_DEV_ROOT_TOKEN | D environment variable:

A WOWNPFP

$ export VAULT_DEV_ROOT_TOKEN | D="s. SoneLongSt ri ngThat | sUni queToYour Vaul t "

You now have a running/unsealed dev Vault. Let's try manually storing some secrets to learn the basics.

Learning the Basics

Storing and Retrieving Secrets

Vault offers an excellent "first steps" tutorial that walks you through reading and writing secrets to the Vault: https://learn.hashicorp.com/vault/getting-started
[first-secret

You can put one or more key-value pairs to a Vault secret using the vaul t kv put command:

$ vault kv put secret/hello foo=world exciting=yes

Key Val ue

created_tine 2019- 10- 30T16: 42: 05. 2695027
del etion_tine n/ a

dest royed fal se

version 2

You can retrieve these values again using vaul t kv get:

$ vault kv get secret/hello

—===== Mpt adata ======

Key Val ue

created_tine 2019- 10- 30T16: 42: 05. 269502Z
del etion_tine n/a

destroyed fal se

version 2

=== Data ===

Key Val ue

excited yes
foo wor | d

Working with Secrets Engines

See https://learn.hashicorp.com/vault/getting-started/secrets-engines

Our above examples worked fine for secr et/ hel | o, but what if we attempt to change this to soneot her pat h/ hel | 0?

$ vault kv put soreot herpath/hello foo=world
Error nmaking APl request.

URL: CET http://127.0.0.1:8200/v1/sys/internal/ui/munts/soneot herpath/hello
Code: 403. Errors:

* preflight capability check returned 403, please ensure client's policies grant access to path "soneot herpath
/hellol™"

This is because we don't have a secr et s engi ne enabled that matches sonmeot her pat h/ . A secrets engine is Vault's way of writing these secrets to
the underlying filesystem. This way, we don't need to worry about proper file formats or manually ingesting values.

To see all of the currently-enabled secrets engines, you can use vaul t secrets |ist:

https://learn.hashicorp.com/vault/getting-started/first-secret
https://learn.hashicorp.com/vault/getting-started/first-secret
https://learn.hashicorp.com/vault/getting-started/secrets-engines

$ vaul t

secrets |ist

Pat h Type Accessor

cubbyhol e/ cubbyhol e cubbyhol e_d1212f 15
identity/ identity identity_910c214b
secret/ kv kv_19353bba

sys/ system system c58eabal

To enable a new secrets engine:

$ vault secrets enable -path=kv/ kv

Success! Enabl ed the kv secrets engine at: kv/
$ vault secrets list

Pat h Type Accessor

cubbyhol e/ cubbyhol e cubbyhol e_d1212f 15
identity/ identity identity_910c214b
kv/ kv kv_aab513af 3

secret/ kv kv_19353bba

sys/ system syst em c58eabal

Description

per-token private secret storage
identity store

key/val ue secret storage

system endpoi nts used for control,

Description

per-token private secret storage
identity store

n/ a

key/ val ue secret storage

system endpoi nts used for control,

policy and debuggi ng

policy and debuggi ng

We are now able to store values prefixed with kv/ or whatever path was provided when enabling the secrets engine:

$ vault wite kv/my-secret val ue="s3c(eT"
Success! Data witten to: kv/ny-secret

$ vault wite kv/hello target=world
Success! Data witten to: kv/hello

$ vault wite kv/airplane type=boeing class=787
Success! Data witten to: kv/airplane

$ vault list kv

Keys

ai r pl ane

hel | o

ny-secr et

We can disable a secrets engine using a similar syntax:

$ vault secrets disable kv/

Success!

Di sabl ed the secrets engine (if

it existed) at:

kv/

For a list of all available secrets engines, please see the Vault documentation regarding Secrets Engines.

Managing Users and Policies

See https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s#step-2-configure-kubernetes-auth-method

By default, you are authenticated into the dev cluster as the admin user - this user can access all paths regardless of the policies set.

The admin defines a set of paths that other users should be able to access and assigns a list of capabi | i ti es (verbs) that a user is allowed to perform
on that path.

Create a read-only policy for a particular key or set of keys and write some test keys to it as the admin user:

https://www.vaultproject.io/docs/secrets/index.html#secrets-engines
https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s#step-2-configure-kubernetes-auth-method

Create a policy file, nyapp-kv-ro.hcl
$ tee nyapp-kv-ro. hcl <<EOF
If working with K/'V vl
path "secret/nyapp/*" {
capabilities = ["read", "list"]

}

1f working with KV v2

path "secret/datal/ nyapp/*" {
capabilities = ["read", "list"]

}

ECF

Create a policy named nyapp-kv-ro
$ vault policy wite nyapp-kv-ro nyapp-kv-ro. hcl

Wite sone test keys as the adm n user

$ vault kv put secret/nyapp/config username="appuser' \
passwor d=' suP3rsec(et!" \
ttl =" 30s'

Enable the user pass auth method, then create and login as a new test user:

Enabl e userpass auth net hod
$ vault auth enabl e userpass

Create a user named "test-user"

$ vault wite auth/userpass/users/test-user \
passwor d=traini ng \
pol i ci es=nyapp-kv-ro

Login as test-user

$ vault login -nethod=userpass \
user name=t est - user \
passwor d=t r ai ni ng

We can now test that our policy is working as we have defined. Try to read from, then write to secr et / myapp/ conf i g and you should see that your
request is denied with a 403 - this means that our policy is working correctly!

Verify that test-user can read secret/nyapp path, as policy has witten
$ vault kv get secret/nyapp/config

====== Met adata ======
Key Val ue
created_tine 2019- 10- 29T20: 52: 41. 152472
del etion_tine n/ a
destroyed fal se
version 1

Dat a
Key Val ue
passwor d suP3rsec(et!
ttl 30s
user name appuser

Verify that test-user CANNOT wite secret/myapp path, as policy has witten
$ vault kv put secret/nyapp/config another=one
Error witing data to secret/datal/nyapp/config: Error meking APl request.

URL: PUT http://127.0.0.1: 8200/ v1/ secret/datal myapp/ config
Code: 403. Errors:

* 1 error occurred:
* perm ssion deni ed

After testing the policy, you will need to log back into the privileged user to configure Kubernetes auth:

Log back in using the token you saved fromVault's startup | ogs
$ vault login ${VAULT_DEV_ROOT_TOKEN | D}

Vault Agent for Kubernetes

The next step is to configure Vault's Kubernetes authentication method.
See https://www.vaultproject.io/docs/auth/kubernetes.html#configuration
See https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s

First, configure a ServiceAccount in Kubernetes that Vault will use to authenticate:

Create a service account called 'vault-auth'
$ kubect| create serviceaccount vault-auth

Wite a set of permissions for the service account
$ cat vault-auth-service-account.yn
api Version: rbac. authori zation. k8s.io/vlbetal
ki nd: d uster Rol eBi ndi ng
met adat a:
nane: rol e-tokenrevi ew bi ndi ng
nanmespace: defaul t
rol eRef:
api G oup: rbac. aut hori zation. k8s.io
kind: dusterRole
nane: system aut h-del egat or
subj ects:
- kind: ServiceAccount
nane: vaul t-auth
nanmespace: defaul t

Update the vault-auth service account with the new perm ssions
$ kubect| apply --filenane vault-auth-service-account.yni

If you are running locally, you will also need to point Vault at your Kubernetes cluster. In the Helm Chart case, this should already be done for you.

Set VAULT_SA NAME to the service account you created earlier

$ export VAULT_SA NAMVE=$(kubect| get sa vault-auth -o jsonpath="{.secrets[*]['name']}")

Set SA JW_TOKEN val ue to the service account JW used to access the TokenRevi ew API
$ export SA JWI_TOKEN=$(kubect!| get secret $VAULT_SA NAME -o jsonpath="{.data.token}" |

Set SA CA CRT to the PEM encoded CA cert used to talk to Kubernetes API

$ export SA CA CRT=$(kubectl

get secret $VAULT_SA NAME -0 jsonpath="{.data['ca\.crt']}"

Set K8S_HOST to minikube or master |P address
$ export K8S_HOST=$(mi ni kube ip)

Now we are ready to enable the Kubernetes auth method:

base64 --decode;

base64 --decode;

echo)

echo)

https://www.vaultproject.io/docs/auth/kubernetes.html#configuration
https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s

Enabl e the Kubernetes auth nmethod at the default path ("auth/kubernetes")
$ vault auth enabl e kubernetes

Tell Vault how to communicate with the Kubernetes cluster
$ vault wite auth/kubernetes/config \

t oken_revi ewer _j wt ="$SA JW_TOKEN" \

kuber net es_host ="ht t ps: // $K8S_HOST: 8443" \

kuber netes_ca_cert="$SA CA CRT"
Create a role naned 'exanple' to map Kubernetes ServiceAccount to Vault policies and default token TTL
$ vault wite auth/kubernetes/role/exanple \

bound_servi ce_account _nanes=vaul t-auth \

bound_servi ce_account _nanespaces=defaul t \

pol i ci es=nyapp-kv-ro \

ttl=24h

Test That it Works

Run a simple pod:

$ kubect! run --generator=run-pod/vl tnp --rm-i --tty --serviceaccount=vault-auth --inmage al pine:3.7

Once inside the container, install cur| andj q:

[# apk update
/# apk add curl jq

Verify that you can communicate with the Vault cluster and you should see output similar to the following:

/# VAULT_ADDR=http://10.0.2.2: 8200

/# curl -s $VAULT_ADDR/v1l/sys/health | jq

{
"initialized": true,
"seal ed": false,
"standby": fal se,
"per formance_st andby": fal se,
"replication_perfornmance_node": "disabled",
"replication_dr_node": "disabled",
"server_tinme_utc": 1543969628,
"version": "1.0.0+ent",
"cluster_name": "vault-cluster-e314942e",
"cluster_id": "2b4f6213-d58f-0530-cf07-65ea467181f 2"
}

NOTE: Be sure to set VAULT_ADDR to where your Vault server is running if it's NOT running locally.

Set KUBE_TOKEN to the service account token value:

| # KUBE_TOKEN=$(cat /var/run/secrets/kubernetes.iolserviceaccount/token)
/# echo $KUBE_TOKEN

Now, test the kuber net es auth method to ensure that you can authenticate with Vault:

/# curl --request POST \
--data "{"jw": "'""$KUBE_TOKEN''", "role": "exanple"}"' \
$VAULT_ADDR/ v1/ aut h/ kubernetes/login | jq

"auth": {
"client_token": "s.7cH83AFI dmXXYKsPsSbeESpp",
"accessor": "8bmyWFWsHt wDHLA0XSi uMZRh"
"policies": [
"defaul t",
"nmyapp- kv-ro"
1.
"token_policies": [
"defaul t",
"nmyapp- kv-ro"
1.
"metadata": {
"role": "exanple",
"servi ce_account _nane": "vaul t-auth",
"service_account _nanespace": "default",
"servi ce_account _secret_nanme": "vault-auth-token-vqql p",
"service_account _uid": "adaca842-f2a7-11e8-831le-080027b85b6a"
H
"l ease_duration": 86400,
"renewabl e": true,
“entity_id": "2c4624f1-29d6-972a-f b27- 729b50dd05e2",
"token_type": "service"

Notice that cl i ent _t oken is successfully generated and nyapp- kv-r o policy is attached with the token. The met adat a displays that its service
account name (ser vi ce_account _nane) is vaul t - aut h.

Vault Agent Auto-Auth

See https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s#step-4-leverage-vault-agent-auto-auth

Configuring the Agent

Create a file called vaul t - agent - confi g. hcl :

exit_after_auth = true
pid_file = "/hone/vaul t/pidfile"

auto_auth {
met hod "kubernetes" {

nount _path = "aut h/ kuber net es"
config = {
role = "exanpl e"
}
}
sink "file" {
config = {
path = "/home/vaul t/.vaul t-token"
}

Notice that the Vault Agent Auto-Auth is configured to use the kuber net es auth method enabled at the aut h/ kuber net es path on the Vault server.
The Vault Agent will use the exanpl e role to authenticate.

The si nk block specifies the location on disk where to write tokens. Vault Agent Auto-Auth si nk can be configured multiple times if you want Vault Agent
to place the token into multiple locations. In this example, the si nk is setto / home/ vaul t/ . vaul t - t oken.

Create a Consul Template

https://learn.hashicorp.com/vault/identity-access-management/vault-agent-k8s#step-4-leverage-vault-agent-auto-auth

Vault uses Consul under the hood to persist its key-value pairs. Consul is a service mesh for Kubernetes that provides convenient ways to plug data into
running pods.

NOTE: Consul is outside of the scope of this document. For more about Consul, see https://medium.com/velotio-perspectives/a-practical-guide-to-
hashicorp-consul-part-1-5ee778a7fcf4

We can leverage Consul to create a template called consul -t enpl at e- confi g. hcl :

vault {
renew_t oken = fal se
vaul t _agent _token_file = "/hone/vaul t/.vault-token"
retry {
backoff = "1s"
}
}

tenplate {
destination = "/etc/secrets/index. htm"
contents = <<ECH
<htm >
<body>
<p>Sone secrets:</p>
{{- with secret "secret/nyapp/config" }}

<l i><pre>usernanme: {{ .Data.usernane }}</pre>
<l i><pre>password: {{ .Data.password }}</pre>

{{ end }}
</ body>
</htnm >
ECH

This template reads secrets at the secr et / myapp/ conf i g path and set the user nanme and passwor d values.

NOTE: If the secr et/ path is enabled with key/value v2 secrets engine, the templatized expressions should be modified as follow (Line 15 through 18):

tenplate {
{{- with secret "secret/datal/nyapp/config?version=1" }}

<l i><pre>usernane: {{ .Data.data.usernane }}</pre>

<l i><pre>password: {{ .Data.data.password }}</pre>

{{ end }}

Create a ConfigMap

Place the two files you just created into a new directory called . / conf i g- k8s and run the following commands to create a ConfigMap from them:

Create a ConfigMap called 'exanpl e-vault-agent-config'
$ kubect| create configmap exanpl e-vaul t-agent-config --fromfile=./configs-k8s/

View the created Confighap
$ kubect! get configmap exanpl e-vaul t-agent-config -o yan

Now create a pod spec named exanpl e- k8s- spec. ynl that mounts in the files from the exanpl evaul t - agent - conf i g ConfigMap and using the va
ul t - aut h ServiceAccount:

api Version: vl
ki nd: Pod
net adat a:

https://medium.com/velotio-perspectives/a-practical-guide-to-hashicorp-consul-part-1-5ee778a7fcf4
https://medium.com/velotio-perspectives/a-practical-guide-to-hashicorp-consul-part-1-5ee778a7fcf4
https://learn.hashicorp.com/vault/developer/sm-app-integration
https://www.vaultproject.io/docs/secrets/kv/kv-v2.html

nane: vaul t - agent - exanpl e
spec:
servi ceAccount Name: vaul t-auth

restartPolicy: Never

vol unes:
- nane: vault-token
enptyDir:

medi um Menory

- nane: config
confi ghvap:
name: exanpl e-vaul t-agent-config
itens:
- key: vault-agent-config. hcl
pat h: vaul t-agent -confi g. hcl

- key: consul -tenpl at e-confi g. hcl
path: consul -tenpl at e-confi g. hcl

- nane: shared-data
enptyDir: {}

i nitContai ners:
Vaul t contai ner
- nane: vault-agent-auth
image: vault

vol uneMount s:
- nane: config
nmount Pat h: /etc/vault
- nane: vault-token
nmount Pat h: / home/ vaul t

This assumes Vault running on |ocal
env:
- name: VAULT_ADDR
val ue: http://10.0.2.2:8200

Run the Vault agent
args:
[

"agent",

host and K8s running in M ni kube using Virtual Box

"-config=/etc/vaul t/vault-agent-config.hcl",

#"-10g-1 evel =debug",
]

cont ai ners:
Consul Tenpl ate contai ner
- nane: consul -tenpl ate

i mage: hashi corp/ consul -tenpl at e: al pi ne

i magePul | Policy: A ways

vol uneMount s:
- nane: vault-token
nmount Pat h: / hone/ vaul t

- nane: config
mount Pat h: /etc/consul -tenpl ate

- nane: shared-data
mount Path: /etc/secrets

env:
- nanme: HOVE
val ue: /home/vault

- nanme: VAULT_ADDR
val ue: http://10.0.2.2:8200

Consul - Tenpl ate | ooks in $HOWE . vaul t-token, $VAULT_TOKEN, or -vault-token (via CLI)

args:

[

"-config=/etc/consul -tenpl at e/ consul -t enpl at e-config. hcl ",
#"-10g-1 evel =debug",
]

Ngi nx cont ai ner
- nane: ngi nx-contai ner
i mage: ngi nx

ports:
- containerPort: 80

vol umeMount s:
- nane: shared-data
nmount Pat h: /usr/share/ ngi nx/ ht m

Execute the following command to create the vaul t - agent - exanpl e Pod:

$ kubect! apply -f exanpl e-k8s-spec.ym --record

It will take a minute or so for the Pod to become fully up and running.

Verification

Open a port-forward so you can connect to the client from browser:

$ kubect| port-forward pod/vault-agent-exanpl e 8080: 80

In a web browser, go to | ocal host : 8080

@ & L4 [@ lacalhost:8080

Google Google Training ~» Vault + Docs v+ Google Groups
Some secrets:
® username: appuser

¢ password: suP3rsec(et!

Notice that the user name and passwor d values were successfully read from secr et / nyapp/ confi g.

This proves that we are able to capture Vault values and automatically render them at container startup using Consul.

Open a shell to the consul - t enpl at e container:

$ kubect| exec -it vault-agent-exanple --container consul -tenplate sh

Remember that we set the Vault Agent's si nk to be / home/ vaul t/ . vaul t - t oken. To view the token stored in the sink:

/# echo $(cat /home/vaul t/.vault-token)
S. TMQEZzFZxUTBQMW t f y98wTCkZ

This proves that our Vault token is being properly written to the sink.

Even without integrating directly with Consul, this pattern would allow us to use the Vault token within the container to access a Vault's contents!

	Encrypting Kubernetes Secrets with Vault

