lengthKind="pattern" Another delimiter expression or a
complex character class (Answered)

The current implementation of | engt hKi nd="pat t er n" assumes the | engt hPat t er n expression stores a value to be match. That is to say if one
wanted a hexadecimal string, one would set | engt hPat t er n="[0- 9A- Fa- f] +" in the current implementation. This would still require a separator
attribute though because it doesn't code for the delimiter that would normally separate fields.

However, the AO and AV tests from Tresys assume the opposite: that the lengthPattern is another form of separator/delimiter and doesn't say anything
about the data format for the given field.

MikeB said: The correct definition is 'value to be matched', not a regex way to express delimiters.

In the current implementation, the separator might also become part of the pattern since it's possible to define a positive look-ahead which specifies the
end of the field. For example, if the separator is a comma (,) and the patternis "[A-Z] [a- z] *(?=, | $) ", (meaning the next field must consist of a
capital/majuscule letter followed by zero or more lower-case/minuscule letters which then terminates at the first comma or end of string.

The t est Lengt hKi ndPat t er n test case in sub- proj ect s/ core-srcTest/ daf f odi | / api / Test API 1. scal a has another example of how the
current implementation might be used:

lengthPattern=".*?2[M\\](?=]9%$)"

The above expression says match any character, zero-or-more though not more than necessary, followed by any character that isn't a backslash (/). It
then asserts that whatever follows this (the first instance of this possible match thanks to the “"though not more than necessary, non-greedy" clause) is
either a comma or an end of string.

If the code were changed to mean that lengthPattern is just another word for a regex separator, this would have to be changed to:
lengthPattern="(?<I\\),"

Which uses a negative look-behind to ensure that the given comma delimiter is not immediately preceded by a backslash. The looks behinds though have
to be fixed length, unlike the look-aheads due to limitations in more regex parsers, so for instance (?<=a{1,3}) is not a valid positive look-behind.

So the opened question is, which is better: should lenghtPattern subsume separator or should it specify the pattern the field may match?

And | reverted back to the original implementation and test thanks to Mike's comment below; we will treat lengthKind="pattern" as a regex match against
the field. What has yet to be decided is how to handle field delimiters and separators.

MikeB said: Best to go to the current draft of the DFDL spec. The AA-BG tests were part of the original daffodil code base, and that was developed
based on a very early draft of the DFDL standard, which has since changed a great deal as it has converged toward an agreed standard. In
particular, way back somebody suggested "why not let delimiters be regular expressions?" For a while this was entertained, and that's when the
original daffodil code base was created along with tests AA-BG. But this was later viewed as too much generality (hence complexity, especially
when debugging "why doesn't my DFDL schema work???"), for not enough benefit.

The lengthKind="pattern" was added to handle the cases which truly need a complex match.

	lengthKind="pattern" Another delimiter expression or a complex character class (Answered)

