
Python Parsers
This page should apply to all geodashboard projects.

Parsers built for GLTG

Repositories

The legacy repository for GLTG parsers is located in  .  Some of https://opensource.ncsa.illinois.edu/bitbucket/projects/GEOD/repos/gltg-parsers-py/browse
the parser sources have been updated recently and some of them have not been touched for years.

These should be migrated to   on updatehttps://opensource.ncsa.illinois.edu/bitbucket/projects/GEOD/repos/pygeotemporal-parsers/browse

Legacy Data Files

https://uofi.app.box.com/folder/131386931931

Overview of GLTG parsers

nebula instance: gltg-parsers2.ncsa.illinois.edu
user = parsers (no password)
root directory = /home/parsers
directory structure

4 directories for 4 systems
3 parsers for 3 sources for each system

run parsers
each system has a shell script that runs all three sources sequentially
for each source all data is parsed first, then a subprocess runs the binning with a wait on subprocess until finished.  When done the next 
source parser starts.  No timeout between source parsers. 

 cronjobs
get greon data from gltg.ncsa.illinois.edu:/var/opt/CampbellSci/loggernet_ordered

runs in as marcuss user (this can be changed but for now it is due to permissions on loggernet on gltg)
/home/marcuss/get_greon_data.sh

uses rsync to pull data to /home/marcuss/data/greon/ then copies to/home/parsers/greon-data/
parsers

4 lines for 4 systems

General processes that take significant time

updating sensor statistics - required at end of parsing to update start and end times https://opensource.ncsa.illinois.edu/bitbucket/projects/GEOD
 /repos/pygeotemporal/browse/pygeotemporal/sensors.py#239

maybe it does more but not sure
maybe the query can be simplified

System Parsing Times

Here the each source parses the data then waits for the subprocess that bins the data until finished.  When the binning finishes, the the next source parser 
starts.  No timeout between parsers.

gltg-dev
resources

nebula,  proxy 2cpu 4ram
nebula, postgres (4 CPU, 8G RAM)

times by source 
greon .5h
iwqis 1h
usgs

gltg
resources

sd stack, proxy 4cpu 6ram
nebula, postgres (4 CPU, 8G RAM)

times by source
greon 6m
iwqis 40m
usgs 3h 10m 

ilnlrs
setup

10m sleep between greon and iwqis, 20m sleep between iwqis and usgs
binning

2 workers (not 4)
USGS uses 60s sleep after a bin finishes

times

https://opensource.ncsa.illinois.edu/bitbucket/projects/GEOD/repos/gltg-parsers-py/browse
https://opensource.ncsa.illinois.edu/bitbucket/projects/GEOD/repos/pygeotemporal-parsers/browse
https://uofi.app.box.com/folder/131386931931
https://opensource.ncsa.illinois.edu/bitbucket/projects/GEOD/repos/pygeotemporal/browse/pygeotemporal/sensors.py#239
https://opensource.ncsa.illinois.edu/bitbucket/projects/GEOD/repos/pygeotemporal/browse/pygeotemporal/sensors.py#239


greon 25m (can be improved
iwqis 40m
usgs 54m

GLM Parsing Time

GLM Zooplankton/Phytoplankton ingestion timing for Production server (141.142.211.239):

Update Statistics: About an hour for all sensors. (api/sensors/update/).
Binning by season

Ran the following endpoint for all 3 parameters simultaneously:
/api/cache/season/parameter-name

Took about 9 hours for all to complete.
Number of Datapoints:

Zooplankton-biomass: 3004
Zooplankton-biovolume: 3004
Phytoplankton-biovolume: 1930


	Python Parsers

