Medici Extractor in C++

C++

Main Function

int main(int argc, const char *argv[])

{
/1 need an ip
if (argc '=2) {
/] report error
std::cerr << "usage: " << argv[0] << " <ip>" << std::endl;
/1 done
return -1;
} else {
/| create connection
MyConnecti on connection(argv[1]);
I/ start the main event |oop
Event : : Mai nLoop: : i nstance()->run();
/1 done
return O;
}
}

RabbitMQ Connection and Error Handling

MyConnecti on: : MyConnecti on(const std::string & p)
_socket (Event:: Mai nLoop: :i nstance(), this),
_connection(nullptr),

_channel (nul I ptr)

{
/'l start connecting
if (_socket.connect(Network::|pv4Address(ip), 5672)) return;
I/ failure
onFai |l ure(& socket);
}
/**

* Destructor

*/
My Connecti on: : ~MyConnect i on()
{

/1 do we still have a channel ?
if (_channel) delete _channel;

/1 do we still have a connection?
if (_connection) delete _connection;

* Method that is called when the connection failed

* @aram socket Pointer to the socket

*/

voi d MyConnection:: onFail ure(Network: : TcpSocket *socket)

{

Il report error
std::cout << "connect failure" << std::endl;

| **

* Method that is called when the connection tinmed out (which also is a failure
* @aram socket Pointer to the socket

*/

voi d MyConnecti on:: onTi neout (Net wor k: : TcpSocket *socket)

{

/'l report error
std::cout << "connect timeout" << std::endl;

| **

* Method that is called when the connection succeeded

* @aram socket Poi nter to the socket
*/
voi d MyConnecti on:: onConnect ed(Net work: : TcpSocket *socket)
{
/] report connection
std::cout << "connected" << std::endl;
/1l we are connected, leap out if there already is a angp connection
if (_connection) return;
/] create angp connection, and a new channel
_connection = new AMQP: : Connection(this, AMQP::Login("guest", "guest"), "/");
_channel = new AMQP: : Channel (_connection, this);
/'l we declare a queue, an exchange and we publish a nessage
_channel - >decl ar eQueue(" ny_queue");
_channel - >decl ar eExchange(" my_exchange", AMQP::direct);
_channel - >bi ndQueue(" ny_exchange", "ny_queue", "key");
}
/**

* Method that is called when the socket is closed (as a result of a TcpSocket::close() call)

* @aram socket Pointer to the socket
*
/
voi d MyConnection::onC osed(Network:: TcpSocket *socket)
{
/'l show
std::cout << "nmyconnection closed" << std::endl;
/1 close the channel and connection
if (_channel) delete _channel;
if (_connection) delete _connection;
/1 set to null
_channel = nullptr;
_connection = nullptr;
}
/*-k

* Method that is called when the peer closed the connection

* @aram socket Poi nter to the socket
*/
voi d MyConnection::onLost (Net work: : TcpSocket *socket)

{

/] report error
std::cout << "connection |ost" << std::endl;

/1 close the channel and connection
if (_channel) delete _channel;
if (_connection) delete _connection;

/1 set to null
_channel = nullptr;
_connection = nullptr;

/**

* Method that is called when data is received on the socket

* @aram socket Pointer to the socket
* @aram buffer Pointer to the fill input buffer
*/

voi d MyConnecti on:: onDat a(Net wor k: : TcpSocket *socket, Network::Buffer *buffer)
{

/1 send what canme in
std::cout << "received: " << buffer->size() << " bytes" << std::endl;

/] leap out if there is no connection
if (!_connection) return;

/1 let the data be handl ed by the connection
size_t bytes = _connection->parse(buffer->data(), buffer->size());

/'l shrink the buffer
buf f er - >shri nk(bytes);

* Method that is called when data needs to be sent over the network

* Note that the AMQP library does no buffering by itself. This nmeans
* that this nethod should always send out all data or do the buffering
* itself.

* (@aram connection The connection that created this output
* @aram buffer Data to send
* @aram size Si ze of the buffer
*/
voi d MyConnecti on:: onDat a(AMQP: : Connecti on *connection, const char *buffer, size_t size)
{
/1 send to the socket
_socket.wite(buffer, size);
}
/**

* \WWen the connection ends up in an error state this nmethod is called.
* This happens when data comes in that does not match the AMQP protocol

* After this nethod is called, the connection no longer is in a valid
* state and can be used. In normal circunstances this nmethod is not called.

* @aram connection The connection that entered the error state
* (@aram nessage Error nessage
*/

voi d MyConnecti on:: onError (AMQP: : Connecti on *connection, const std::string &message)
{

/] report error

std::cout << "AMQP Connection error: " << nessage << std::endl;

* Method that is called when the login attenpt succeeded. After this nethod
* was called, the connection is ready to use

* (@aram connection The connection that can now be used
*/
voi d MyConnecti on:: onConnect ed(AMQP: : Connecti on *connecti on)
{
/'l show

std::cout << "AMQP |l ogin success" << std::endl;

/I create channel if it does not yet exist
if (!_channel) _channel = new AMQP:: Channel (connection, this);

* Method that is called when the channel was succesfully created.
* Only after the channel was created, you can use it for subsequent nessages over it
* @aram channel

*/
voi d MyConnecti on:: onReady(AMQP: : Channel *channel)
{
/1 show
std::cout << "AMQP channel ready, id: " << (int) channel->id() << std::endl;
}
/**

* An error has occured on the channel
* @aram channel
* @aram nessage
*/
voi d MyConnection::onError (AMQ®P: : Channel *channel, const std::string &message)
{
/'l show
std::cout << "AMQP channel error, id: " << (int) channel->id() << " - message: " << nmessage << std

/1 main channel cause an error, get rid of if
del ete _channel;

/] reset pointer
_channel = nullptr;

* Method that is called when the channel was paused
* @aram channel

*/
voi d MyConnecti on:: onPaused(AMQP: : Channel *channel)
{
/'l show
std::cout << "AMQP channel paused" << std::endl;
}
/**

* Method that is called when the channel was resuned
* @aram channel

*/
voi d MyConnecti on:: onResuned(AMQP: : Channel *channel)
{
/'l show
std::cout << "AMQP channel resuned" << std::endl;
}
/**

* Method that is called when a channel is closed
* @aram channel

*/
voi d MyConnection:: onC osed(AMQ: : Channel *channel)
{
/'l show
std::cout << "AMQP channel closed" << std::endl;
}
/*-k

* Method that is called when a transaction was started
* @aram channel
*/

coendl;

voi d MyConnecti on::onTransacti onSt art ed(AMQP: : Channel *channel)
{

/'l show

std::cout << "AMQP transaction started" << std::endl;

/**
* Method that is called when a transaction was conmm tted
* @aram channel
*/
voi d MyConnection::onTransacti onCommi tt ed(AMQP: : Channel *channel)

/'l show
std::cout << "AMQP transaction committed" << std::endl;

/**
* Method that is called when a transaction was rolled back
* @aram channel
*/
voi d MyConnection::onTransacti onRol | edBack(AMQP: : Channel *channel)

/'l show
std::cout << "AMQP transaction rolled back" << std::endl;

/**

* Mehod that is called when an exchange is declared

* @aram channel

*/

voi d MyConnecti on:: onExchangeDecl ar ed(AMQP: : Channel *channel)

/'l show
std::cout << "AMQP exchange decl ared" << std::endl;

/**

* Method that is called when an exchange i s bound

* @aram channel

*/

voi d MyConnecti on:: onExchangeBound(AMQP: : Channel *channel)

/'l show
std::cout << "AMQP Exchange bound" << std::endl;

/*-k

* Method that is called when an exchange i s unbound

* @aram channel

*/

voi d MyConnecti on:: onExchangeUnbound(AMQP: : Channel *channel)

/'l show
std::cout << "AMQP Exchange unbound" << std::endl;

/**
* Method that is called when an exchange is del eted
* @aram channel
*/
voi d MyConnecti on:: onExchangeDel et ed(AMQP: : Channel *channel)

/'l show
std::cout << "AMQP Exchange del eted" << std::endl;

* Method that is called when a queue is declared
* @aram channel

* @aram nane nane of the queue

* @aram nmessageCount nunber of nessages in queue
* @aram consuner Count nunber of active consuners
*/

voi d MyConnecti on:: onQueueDecl ar ed(AMQP: : Channel *channel, const std::string &ane, uint32_t messageCount,
ui nt 32_t consuner Count)

{

/1 show

std::cout << "AMQP Queue decl ared" << std::endl;
}
/**

* Method that is called when a queue is bound
* @aram channel

* @aram
*/
voi d MyConnecti on:: onQueueBound(AMQP: : Channel *channel)
{
/'l show

std::cout << "AMQP Queue bound" << std::endl;

_channel - >publ i sh("nmy_exchange", "invalid-key", AMQP::nmandatory, "this is the nessage");

* Method that is called when a queue is del eted
* @aram channel
* @aram nmessageCount nunber of nessages deleted along with the queue
*/
voi d MyConnecti on:: onQueueDel et ed(AMQP: : Channel *channel, uint32_t nessageCount)
{
/'l show
std::cout << "AMQP Queue del eted" << std::endl;

| *x*

* Method that is called when a queue is unbound
* @aram channel

*/
voi d MyConnecti on:: onQueueUnbound(AMQP: : Channel *channel)
{
/'l show
std::cout << "AMQP Queue unbound" << std::endl;
}
/*-k

* Method that is called when a queue is purged
* @aram nessageCount nunber of message purged
*/
voi d MyConnecti on:: onQueuePur ged(AMQP: : Channel *channel, uint32_t messageCount)
{
/1 show
std::cout << "AMQP Queue purged" << std::endl;

/**

* Method that is called when the quality-of-service was changed
* This is the result of a call to Channel::setQos()

*/

voi d MyConnecti on: : onQosSet (AMQP: : Channel *channel)

{

/1 show
std::cout << "AMQP Qos set" << std::endl;

* Method that is called when a consuner was started
* This is the result of a call to Channel::consune()

* @aram channel the channel on which the consunmer was started
* (@aram tag the consumer tag
*/

voi d MyConnecti on:: onConsuner St art ed(AMQP: : Channel *channel, const std::string &t ag)

/'l show
std::cout << "AMQP consuner started" << std::endl;

* Method that is called when a nessage has been received on a channel

* @aram channel the channel on which the consumer was started

* (@aram nessage the consumed nessage

* @aram deliveryTag the delivery tag, you need this to acknow edge the nessage

* @aram consunerTag the consumer identifier that was used to retrieve this nmessage
* @aram redelivered is this a redelivered nessage?

*/

voi d MyConnection:: onRecei ved(AMQP: : Channel *channel, const AMQP:: Message &nessage, uint64_t deliveryTag, const
std::string &onsunerTag, bool redelivered)

{
/'l show
std::cout << "AMQP consuned: " << message.nessage() << std::endl;
/1 ack the nessage
channel - >ack(del i veryTag) ;
}
/**

* Method that is called when a nmessage you tried to publish was returned
* by the server. This only happens when the 'mandatory' or 'immediate' flag
* was set with the Channel::publish() call.

* @aram channel the channel on which the nessage was returned
* (@aram nessage the returned nessage

* @aram code the reply code

* @aram text human readabl e reply reason

*/

voi d MyConnecti on:: onRet ur ned(AMQP: : Channel *channel, const AMQP:: Message &nessage, intl1l6_t code, const std::
string &text)

{

/'l show

std::cout << "AMQP nessage returned: " << text << std::endl;
}
/**

* Method that is called when a consuner was stopped
* This is the result of a call to Channel::cancel ()

* @aram channel the channel on which the consunmer was stopped
* @aram tag the consumer tag
*/

voi d MyConnecti on:: onConsuner St opped(AMQP: : Channel *channel, const std::string &t ag)
{

/'l show
std::cout << "AMQP consumer stopped" << std::endl;

	Medici Extractor in C++

