
Medici Extractor in C++

 C++

Main Function

int main(int argc, const char *argv[])
{
 // need an ip
 if (argc != 2) {
 // report error
 std::cerr << "usage: " << argv[0] << " <ip>" << std::endl;

 // done
 return -1;
 } else {
 // create connection
 MyConnection connection(argv[1]);

 // start the main event loop
 Event::MainLoop::instance()->run();

 // done
 return 0;
 }
}

RabbitMQ Connection and Error Handling

MyConnection::MyConnection(const std::string &ip) :
 _socket(Event::MainLoop::instance(), this),
 _connection(nullptr),
 _channel(nullptr)
{
 // start connecting
 if (_socket.connect(Network::Ipv4Address(ip), 5672)) return;

 // failure
 onFailure(&_socket);
}

/**
 * Destructor
 */
MyConnection::~MyConnection()
{
 // do we still have a channel?
 if (_channel) delete _channel;

 // do we still have a connection?
 if (_connection) delete _connection;
}

/**
 * Method that is called when the connection failed
 * @param socket Pointer to the socket
 */
void MyConnection::onFailure(Network::TcpSocket *socket)
{
 // report error
 std::cout << "connect failure" << std::endl;
}

/**
 * Method that is called when the connection timed out (which also is a failure
 * @param socket Pointer to the socket
 */
void MyConnection::onTimeout(Network::TcpSocket *socket)
{
 // report error
 std::cout << "connect timeout" << std::endl;
}

/**
 * Method that is called when the connection succeeded
 * @param socket Pointer to the socket
 */
void MyConnection::onConnected(Network::TcpSocket *socket)
{
 // report connection
 std::cout << "connected" << std::endl;

 // we are connected, leap out if there already is a amqp connection
 if (_connection) return;

 // create amqp connection, and a new channel
 _connection = new AMQP::Connection(this, AMQP::Login("guest", "guest"), "/");
 _channel = new AMQP::Channel(_connection, this);

 // we declare a queue, an exchange and we publish a message
 _channel->declareQueue("my_queue");
 _channel->declareExchange("my_exchange", AMQP::direct);
 _channel->bindQueue("my_exchange", "my_queue", "key");
}

/**
 * Method that is called when the socket is closed (as a result of a TcpSocket::close() call)
 * @param socket Pointer to the socket
 */
void MyConnection::onClosed(Network::TcpSocket *socket)
{
 // show
 std::cout << "myconnection closed" << std::endl;

 // close the channel and connection
 if (_channel) delete _channel;
 if (_connection) delete _connection;

 // set to null
 _channel = nullptr;
 _connection = nullptr;
}

/**
 * Method that is called when the peer closed the connection
 * @param socket Pointer to the socket
 */
void MyConnection::onLost(Network::TcpSocket *socket)
{
 // report error
 std::cout << "connection lost" << std::endl;

 // close the channel and connection
 if (_channel) delete _channel;
 if (_connection) delete _connection;

 // set to null
 _channel = nullptr;
 _connection = nullptr;
}

/**
 * Method that is called when data is received on the socket
 * @param socket Pointer to the socket
 * @param buffer Pointer to the fill input buffer
 */
void MyConnection::onData(Network::TcpSocket *socket, Network::Buffer *buffer)
{
 // send what came in
 std::cout << "received: " << buffer->size() << " bytes" << std::endl;

 // leap out if there is no connection
 if (!_connection) return;

 // let the data be handled by the connection
 size_t bytes = _connection->parse(buffer->data(), buffer->size());

 // shrink the buffer
 buffer->shrink(bytes);
}

/**
 * Method that is called when data needs to be sent over the network
 *
 * Note that the AMQP library does no buffering by itself. This means
 * that this method should always send out all data or do the buffering
 * itself.
 *
 * @param connection The connection that created this output
 * @param buffer Data to send
 * @param size Size of the buffer
 */
void MyConnection::onData(AMQP::Connection *connection, const char *buffer, size_t size)
{
 // send to the socket
 _socket.write(buffer, size);
}

/**
 * When the connection ends up in an error state this method is called.
 * This happens when data comes in that does not match the AMQP protocol
 *
 * After this method is called, the connection no longer is in a valid
 * state and can be used. In normal circumstances this method is not called.
 *
 * @param connection The connection that entered the error state
 * @param message Error message
 */
void MyConnection::onError(AMQP::Connection *connection, const std::string &message)
{
 // report error
 std::cout << "AMQP Connection error: " << message << std::endl;
}

/**
 * Method that is called when the login attempt succeeded. After this method
 * was called, the connection is ready to use
 *
 * @param connection The connection that can now be used
 */
void MyConnection::onConnected(AMQP::Connection *connection)
{
 // show
 std::cout << "AMQP login success" << std::endl;

 // create channel if it does not yet exist
 if (!_channel) _channel = new AMQP::Channel(connection, this);

}

/**
 * Method that is called when the channel was succesfully created.
 * Only after the channel was created, you can use it for subsequent messages over it
 * @param channel
 */
void MyConnection::onReady(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP channel ready, id: " << (int) channel->id() << std::endl;
}

/**
 * An error has occured on the channel
 * @param channel
 * @param message
 */
void MyConnection::onError(AMQP::Channel *channel, const std::string &message)
{
 // show
 std::cout << "AMQP channel error, id: " << (int) channel->id() << " - message: " << message << std::endl;

 // main channel cause an error, get rid of if
 delete _channel;

 // reset pointer
 _channel = nullptr;
}

/**
 * Method that is called when the channel was paused
 * @param channel
 */
void MyConnection::onPaused(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP channel paused" << std::endl;
}

/**
 * Method that is called when the channel was resumed
 * @param channel
 */
void MyConnection::onResumed(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP channel resumed" << std::endl;
}

/**
 * Method that is called when a channel is closed
 * @param channel
 */
void MyConnection::onClosed(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP channel closed" << std::endl;
}

/**
 * Method that is called when a transaction was started
 * @param channel
 */

void MyConnection::onTransactionStarted(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP transaction started" << std::endl;
}

/**
 * Method that is called when a transaction was committed
 * @param channel
 */
void MyConnection::onTransactionCommitted(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP transaction committed" << std::endl;
}

/**
 * Method that is called when a transaction was rolled back
 * @param channel
 */
void MyConnection::onTransactionRolledBack(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP transaction rolled back" << std::endl;
}

/**
 * Mehod that is called when an exchange is declared
 * @param channel
 */
void MyConnection::onExchangeDeclared(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP exchange declared" << std::endl;
}

/**
 * Method that is called when an exchange is bound
 * @param channel
 */
void MyConnection::onExchangeBound(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP Exchange bound" << std::endl;
}

/**
 * Method that is called when an exchange is unbound
 * @param channel
 */
void MyConnection::onExchangeUnbound(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP Exchange unbound" << std::endl;
}

/**
 * Method that is called when an exchange is deleted
 * @param channel
 */
void MyConnection::onExchangeDeleted(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP Exchange deleted" << std::endl;
}

/**
 * Method that is called when a queue is declared
 * @param channel
 * @param name name of the queue
 * @param messageCount number of messages in queue
 * @param consumerCount number of active consumers
 */
void MyConnection::onQueueDeclared(AMQP::Channel *channel, const std::string &name, uint32_t messageCount,
uint32_t consumerCount)
{
 // show
 std::cout << "AMQP Queue declared" << std::endl;
}

/**
 * Method that is called when a queue is bound
 * @param channel
 * @param
 */
void MyConnection::onQueueBound(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP Queue bound" << std::endl;

 _channel->publish("my_exchange", "invalid-key", AMQP::mandatory, "this is the message");
}

/**
 * Method that is called when a queue is deleted
 * @param channel
 * @param messageCount number of messages deleted along with the queue
 */
void MyConnection::onQueueDeleted(AMQP::Channel *channel, uint32_t messageCount)
{
 // show
 std::cout << "AMQP Queue deleted" << std::endl;
}

/**
 * Method that is called when a queue is unbound
 * @param channel
 */
void MyConnection::onQueueUnbound(AMQP::Channel *channel)
{
 // show
 std::cout << "AMQP Queue unbound" << std::endl;
}

/**
 * Method that is called when a queue is purged
 * @param messageCount number of message purged
 */
void MyConnection::onQueuePurged(AMQP::Channel *channel, uint32_t messageCount)
{
 // show
 std::cout << "AMQP Queue purged" << std::endl;
}

/**
 * Method that is called when the quality-of-service was changed
 * This is the result of a call to Channel::setQos()
 */
void MyConnection::onQosSet(AMQP::Channel *channel)
{

 // show
 std::cout << "AMQP Qos set" << std::endl;
}

/**
 * Method that is called when a consumer was started
 * This is the result of a call to Channel::consume()
 * @param channel the channel on which the consumer was started
 * @param tag the consumer tag
 */
void MyConnection::onConsumerStarted(AMQP::Channel *channel, const std::string &tag)
{
 // show
 std::cout << "AMQP consumer started" << std::endl;
}

/**
 * Method that is called when a message has been received on a channel
 * @param channel the channel on which the consumer was started
 * @param message the consumed message
 * @param deliveryTag the delivery tag, you need this to acknowledge the message
 * @param consumerTag the consumer identifier that was used to retrieve this message
 * @param redelivered is this a redelivered message?
 */
void MyConnection::onReceived(AMQP::Channel *channel, const AMQP::Message &message, uint64_t deliveryTag, const
std::string &consumerTag, bool redelivered)
{
 // show
 std::cout << "AMQP consumed: " << message.message() << std::endl;

 // ack the message
 channel->ack(deliveryTag);
}

/**
 * Method that is called when a message you tried to publish was returned
 * by the server. This only happens when the 'mandatory' or 'immediate' flag
 * was set with the Channel::publish() call.
 * @param channel the channel on which the message was returned
 * @param message the returned message
 * @param code the reply code
 * @param text human readable reply reason
 */
void MyConnection::onReturned(AMQP::Channel *channel, const AMQP::Message &message, int16_t code, const std::
string &text)
{
 // show
 std::cout << "AMQP message returned: " << text << std::endl;
}

/**
 * Method that is called when a consumer was stopped
 * This is the result of a call to Channel::cancel()
 * @param channel the channel on which the consumer was stopped
 * @param tag the consumer tag
 */
void MyConnection::onConsumerStopped(AMQP::Channel *channel, const std::string &tag)
{
 // show
 std::cout << "AMQP consumer stopped" << std::endl;
}

	Medici Extractor in C++

