
CI-BER Testbed

Design
Technology
Test Profiles
Parallel Testing

Code

Design
The testbed is a combination of a web dashboard and one or more java processes that test Brown Dog servers with files from the CI-BER collection. Test 
batteries will run continuously using the current test profile. The results are logged, analyzed and presented, so that problems can be identified by the 
Brown Dog development team.

The Testbed samples the files in the CI-BER collection to find those meeting a pre-defined test profile. Tests are run in parallel to simulate future server 
load and each individual test operation result is recorded in the database, as well as the overall performance of the test battery. We should be able to 
diagnose individual service failures and the performance of services under a known load.

Technology

Apache commons-daemon, Spring dependency injection
Jargon iRODS client, Apache http client
MongoDB used for data profile, test results and queuing
JAX-RS controllers with UI in JQuery and D3

Test Profiles

The testbed runs a given set of operations, say many thousand, as fast as possible given the number of parallel processes allocated. The format and 
operations within a given set of tests, along with the number of parallel test workers are all part of a test profile logged in MongoDB. Currently the profile 
includes the number of files for each desired format, by extension.

The test profile seems like an important extension point:

Specify both input and output formats for DAP.
Specifying that test files met a minimum size criteria.
What else??

Since the DAP conversions run through various backend software tools, it seems important that at least some test profiles fire up many converters in 
parallel to simulate real world conditions.



It also seems important to trace the performance of a given test profiles over time. So the web application will need to report out of that via the dashboard 
and/or JSON/REST. (in development)

Parallel Testing

In the current design there is a single daemon process, which will run on a VM at RENCI/UNC and perform tests in parallel threads. These tests consist 
mostly of network I/O, so we can probably run a lot of them in one java process on this VM.

The next step, when needed for performance evaluation, will be to add a test queue in the central MongoDB store. Then run test daemons on addition 
worker VMs.

We will need to pay some attention to the CI-BER IRODS host, to make sure it does not become the bottleneck, i.e. increase the number of server-side 
agent processes.

Code
On GitHub: https://github.com/CI-BER/BrownDog-Testbed

https://github.com/CI-BER/BrownDog-Testbed

	CI-BER Testbed

