
3 - Defining workflows in YAML
This tutorial introduces how Kurator-Akka workflows are specified in YAML files.

What is YAML?

YAML is a plain text format for representing data organized as lists of values and sets of key-value pairs (mappings). The values in these lists and in the
key-value pairs can themselves be lists or mappings. YAML is a superset of JSON (every JSON document is a valid YAML document) that uses white
space (rather than braces and quotes) to organize data, and is thus easy to read.

Kurator-Akka uses YAML to represent workflow definitions so that workflows can be specified and executed without using any software development
tools (other than a text editor), and so that other programs can generate workflow specifications simply by producing a YAML file. Kurator-Akka uses yaml-

 (written by Scott McPhillips for the system) to parse YAML files and to create (using) the workflow components the files spring-loader RestFlow Spring
describe.

Note that grouping and nesting of data in YAML is achieved by aligning and indenting the text in the file. Spaces are used for alignment and
indenting. Tabs are never used in a YAML file.

See for more information about YAML and a list of libraries in C/C++, Ruby, Python, Java, Perl, C#, and other languages for composing http://yaml.org/
and parsing YAML.

Example workflow

We will use the workflow from the Kurator-Akka distribution to illustrate how workflows are specified in YAML. You can extract this YAML file hello.yaml
from the kurator-akka jar file using the unzip command (the -j option prevents any directories from being created during inflation):

$ unzip -j kurator-akka-0.2-executable.jar org/kurator/akka/samples/hello.yaml
Archive: kurator-akka-0.2-executable.jar
 inflating: hello.yaml
$

The contents of are as follows:hello.yaml

imports:

 - classpath:/org/kurator/akka/actors.yaml

components:

 - id: GreetingSource
 type: ConstantSourceActor
 properties:
 parameters:
 value: Hello World!

 - id: GreetingPrinter
 type: PrinterActor
 properties:
 listensTo:
 - !ref GreetingSource

 - id: HelloWorldWorkflow
 type: Workflow
 properties:
 actors:
 - !ref GreetingSource
 - !ref GreetingPrinter
 parameters:
 greeting:
 actor: !ref GreetingSource
 parameter: value

Structure of a YAML workflow definition file

Inspect the contents of above. Kurator-Akka expects each YAML workflow definition file to have a mapping (set of key-value pairs) as the hello.yaml
top-level data structure. A colon in YAML indicates that the preceding string is a key, and that the following value or block of text is the value assigned to
that key. The valid keys of this top-level mapping are , , and , with the result that Kurator-Akka workflow definition files have up to imports types components
three top-level sections: an imports section, a types section, and a components section. The file does not have a section.hello.yaml types

The imports section (the block of text following the imports line) is for providing a list of other YAML files to be included in the current workflow
definition. List items are preceded by a dash. The components section provides a list of the workflow components comprising the workflow. We will focus
on the workflow components for the remainder of this tutorial page.

https://github.com/restflow-org/yaml-spring-loader
https://github.com/restflow-org/yaml-spring-loader
https://github.com/restflow-org/restflow/wiki
http://spring.io/
http://yaml.org/

Workflow components

The components section of hello.yaml contains declarations for two actors and for the workflow as whole. Actors are the active, data
processing components of workflow. The workflow itself is considered a component as well, with the workflow component declaration
containing references to the actor components in it.

Each component in is described by a mapping with three keys: , , and . The of a component is an arbitrary text string that hello.yaml id type properties id
is used to uniquely identify it. The also enables components to refer to each other.id

The of a component refers to a declaration either in the type section of the current YAML file or in a YAML file included (directly or indirectly) in the type imp
 section. Type declarations associate each component type with a Java class, and will be covered in a later tutorial.orts

Finally, each component has a set of that represents its configuration in the current workflow.properties

Examing the components in hello.yaml

The first component in is the actor with id :hello.yaml GreetingSource

 - id: GreetingSource
 type: ConstantSourceActor
 properties:
 parameters:
 value: Hello World!

This declaration states that the component named GreetingSource is an instance of the ConstantSourceActor. ConstantSourceActor emits a value (or
sequence of values) at the beginning of a workflow run. The value emitted by a ConstantSourceActor is specified by the parameter. Parameters value
represent a subset of component properties that are available to the component at run-time. Properties not specified as parameters are used by the
Kurator-Akka framework when building the workflow and are not visible to running components. Here, GreetingSource is configured to emit the string,
'Hello World!' when the workflow starts running.

The second component in hello.yaml is the actor with id GreetingPrinter:

 - id: GreetingPrinter
 type: PrinterActor
 properties:
 listensTo:
 - !ref GreetingSource

GreetingPrinter is an instance of A writes any data it receives to an output stream (which defaults to stdout of PrinterActor. PrinterActor
the process running the workflow). The property of is assigned a list containing a single element with the value listensTo GreetingPrinter !ref

. Actors in a workflow generally receive the data they process from other actors in the same workflow, and the property on GreetingSource listensTo
an actor lists the actors that this actor receives data from. The keyword indicates that the string following it is not a literal value but a reference to !ref
(identifier of) a component defined elsewhere in the workflow. Here, is configured to receive any data emitted by , GreetingActor GreetingSource
and thus will receive the string 'Hello World!' emitted by when the workflow is run.GreetingSource

The final component of in is identified as :hello.yaml HelloWorldWorkflow

 - id: HelloWorldWorkflow
 type: Workflow
 properties:
 actors:
 - !ref GreetingSource
 - !ref GreetingPrinter
 parameters:
 greeting:
 actor: !ref GreetingSource
 parameter: value

HelloWorldWorkflow is an instance of component is used to specify which actors defined in the yaml file (or in imported Workflow. A Workflow
yaml files) comprise a single workflow. A also gives values for properties that affect the workflow as a whole. The property is assigned Workflow actors
a list of references to the actors in the workflow, while the property is used to expose parameters on individual actors in the workflow. parameters
Parameters exposed in this way are configurable by users of the workflow.

Here, is configured to comprise two actors, and . The parameter of the HelloWorldWorkflow GreetingSource GreetingPrinter value GreetingS
 actor is exposed as the parameter of the workflow. See the final section of for an example run ofource greeting Tutorial 2 - Running workflows hello.

 with an assignment to the parameter of the workflow.yaml greeting

https://opensource.ncsa.illinois.edu/confluence/display/KURATOR/2+-+Running+workflows

	3 - Defining workflows in YAML

