
1.

2.

3.
a.
b.

4.

5.

a.
b.
c.

d.

Extractors

1 Setting up a development environment
1.1 Start a local Clowder instance
1.2 Install pyClowder 2

2 Extractor basics
2.1 Typical extractor structure

3 Running a sample extractor
4 Writing an extractor

4.1 Extractor vs. Command-line - Calling Your Scripts
4.2 common requirements

5 start extractors
6 Converting from pyClowder to pyClowder2

6.1 Key differences
6.2 Migration steps

7 Registering an Extractor

Extractors are services that run silently alongside Clowder. They can be configured to wait for specific file types to be uploaded into Clowder, and
automatically execute scripts and processing on those files to extract metadata or generate new files.

Setting up a development environment
In order to develop and test an extractor, it's useful to have a local instance of Clowder running that you can test against. This will allow you to upload
target files to trigger your extractor, and verify any outputs are being submitted back into Clowder correctly.

Start a local Clowder instance

The easiest way to get a local Clowder instance up and running is via . We have created a docker image with the full Clowder stack already Docker
installed:

Java (to run the Clowder application itself)
MongoDB (underlying database storage)
RabbitMQ (message bus for communication between Clowder and extractors)
Clowder itself

It's possible to install these elements individually, but unless you want to pursue Clowder development this is unnecessary.

Install Docker and download our from GitHub. This file tells Docker how to fetch and start the component containers for docker-compose.yml file
Clowder and its dependencies.

From a docker-aware terminal, go to the directory where you put the .yml file and run . This should start Clowder and its docker-compose up
components.

Now you need to determine which IP address Docker is running on.
Docker's Networking documentation shows how to use and to determine Docker's IP address. docker network ls ifconfig
Older installations that use docker-machine may need to use .docker-machine ip

You should be able to now access Clowder at .<dockerIP>:9000
You can also access the RabbitMQ management console at .<dockerIP>:15672

Finally, sign up for a local account in Clowder. Because we have not configured an email server, - however we no confirmation email will be sent
can get the confirmation URL from the Clowder logs:

docker ps to list running Docker containers
 docker logs <clowder container name> to see the logs for your Clowder container

Look for a block of HTML in the log that is the body of the unsent email:

Copy the link into your browser to activate your account. For example in the screenshot above you would visit:
 http://localhost:9000/clowder/signup/22af7d43-8260-4c6c-822a-22bca0cb8340

https://www.docker.com/
https://docs.docker.com/
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/clowder/browse/docker-compose.yml
https://docs.docker.com/engine/userguide/networking/
http://localhost:9000/clowder/signup/22af7d43-8260-4c6c-822a-22bca0cb8340

1.
2.
3.

Install pyClowder 2

In addition to Clowder, another package that makes extractor development easier is pyClowder 2. - extractors can be written This package is not required
in .any language that RabbitMQ supports

pyClowder 2 provides helpful Python wrapper functions for many standard Clowder API calls and communication with RabbitMQ using pika. If you want to
write extractors in other languages, you'll need to implement that functionality on your own.

Install Git
git clone https://opensource.ncsa.illinois.edu/bitbucket/scm/cats/pyclowder2.git

 python setup.py install from inside the new pyclowder2 directory

This will install pyClowder 2 on your system. In Python scripts you will refer to the package as:

import pyclowder
from pyclowder.extractors import Extractor
import pyclowder.files

...etc.

Extractor basics
When certain events occur in Clowder, such as a new file being added to a dataset, messages are generated and sent to RabbitMQ. These messages
describe the type of event, the ID of the file/dataset in question, the MIME type of the file, and other information.

Extractors are configured to listen to RabbitMQ for particular types of messages. For example, an extractor can listen for file being added to a dataset, any
or for specifically to be added to a dataset. below describes some of the available messages. RabbitMQ knows how to image files Clowder event types
route messages coming from Clowder to any extractors listening for messages with that signature, at which point the extractor can examine the message
and decide whether to proceed in processing the file/dataset/etc.

Clowder event types

Extractors use the RabbitMQ message bus to communicate with Clowder instances. Queues are created for each extractor, and the queue bindings filter
the types of Clowder event messages the extractor is notified about. The following non-exhaustive list of events exist in Clowder (messages begin with an
asterisk because the exchange name is not required to be 'clowder'):

message type trigger event message payload examples

*.file.# when any file is uploaded
added file ID
added filename
destination dataset ID, if applicable

clowder.file.image.png

clowder.file.text.csv

clowder.file.application.json

*.file.image.#

*.file.text.#

...

when any file of the given MIME type is uploaded

(this is just a more specific matching)
added file ID
added filename
destination dataset ID, if applicable

see above

*.dataset.file.added when a file is added to a dataset
added file ID
dataset ID
full list of files in dataset

clowder.dataset.file.added

*.dataset.file.removed when a file is removed from a dataset
removed file ID
dataset ID
full list of files in dataset

clowder.dataset.file.removed

*.metadata.added when metadata is added to a file or dataset
file or dataset ID
the metadata that was added

clowder.metadata.added

*.metadata.removed when metadata is removed from a file or dataset
file or dataset ID

clowder.metadata.removed

Typical extractor structure

In a pyClowder 2 context, extractor scripts will have 3 parts:

https://www.rabbitmq.com/devtools.html
https://git-scm.com/
https://mburnet2@opensource.ncsa.illinois.edu/bitbucket/scm/cats/pyclowder2.git

1.

2.
a.
b.

c.

3.

4.
a.
b.
c.

5.

 main() will set up the connection with RabbitMQ and begin listening for messages. This typically will not change across extractors.

 check_message(parameters) receives the message from RabbitMQ and includes information about the message in the parameters
argument. Extractors can count the number of files, look for particular file extensions, check metadata and so on.

Return 'true' or 'download' to download the file(s) process with process_message (below)
Return 'bypass' to process with process_message, but skip downloading the file automatically
Return 'false' or 'skip' to decline processing the file.

 process_message(parameters) receives the message and, if specified in check_message(), the file(s) themselves. Here the actual extractor
code is called on the files. Outputs can also be uploaded back to Clowder as files and/or metadata, for example.

In addition to the extractor script itself:

extractor_info.json contains some metadata about the extractor for registration and documentation. For more documentation on this file
refer .here
Many extractors will also include a Dockerfile for creating docker images of the extractor.

Running a sample extractor
Now that we have our necessary dependencies, we can try running a simple extractor to make sure we've installed things correctly. The wordcount
extractor is included with pyClowder 2 and will add metadata to text files when they are uploaded to Clowder.

Go to /pyclowder2/sample-extractors/wordcount/

Run the extractor
python wordcount.py is basic example
If you're running Docker, you'll need to specify the correct RabbitMQ URL because Docker is not localhost:
python wordcount.py --rabbitmqURI amqp://guest:guest@<dockerIP>/%2f
You can use to get other commandline options.python wordcount.py -h

When the extractor reports " you are ready.Starting to listen for messages"

Upload a .txt file into Clowder
Create > Datasets
Enter a name for the dataset and click Create
Select Files > Upload

Verify the extractor triggers and metadata is added to the file, e.g.:

You'll be able to see some activity in the console where you launched the extractor if done correctly.

Writing an extractor
Once you can run the sample extractor, you are ready to develop your own extractor. Much of this section will be specific to Python extractors using
pyClowder 2, but the concepts apply to all extractors.

Extractor vs. Command-line - Calling Your Scripts

Often you will have a script that already performs the desired operations, perhaps by providing a directory of input and output files on the command line.
The goal will be to call the correct parts of your existing script from within the function in your extractor, and to push the outputs process_message()
from those methods back into Clowder.

Things to keep in mind:

Extractors do not necessarily operate on a single directory of files. Extractors can be run on any machine, anywhere in the world, as long as they
can communicate with RabbitMQ. To support this, pyClowder knows how to download all necessary data into a temporary directory. But this
means the files may be in different locations when the extractor is called - your extractor will simply receive a list of paths to where your files are
located on disk, even in a /tmp location. If your script expects the files to be in one directory and you don't want to generalize it, you will
need to check for that condition first and move the temporary files around if not.

https://opensource.ncsa.illinois.edu/confluence/display/CATS/extractor_info.json

1.

a.
i.
ii.

b.
i.

c.
i.
ii.

2.
a.

b.
c.

. You are responsible for handling your script outputs If your extractor generates new files, you must upload them into Clowder before finishing. If
your extractor generates metadata, you must attach them to the file or dataset of interest. pyClowder 2 does not handle outputs automatically,
although we provide methods to make uploading easy.

common requirements
sudo -s
export RABBITMQ_URL="amqp://guest:guest@localhost:5672/%2F"
export EXTRACTORS_HOME="/home/clowder"

apt-get -y install git python-pip
pip install pika requests

cd ${EXTRACTORS_HOME}
git clone https://opensource.ncsa.illinois.edu/stash/scm/cats/pyclowder.git
chown -R clowder.users pyclowder

start extractors

cd /etc/init
for x in clowder-*.conf; do
 start `basename $x .conf`
done

Converting from pyClowder to pyClowder2
Given an extractor that is written to use pyClowder 1, the process of migrating to pyClowder 2 is fairly straightforward.

Key differences

config.py is no longer used or needed.
Several of the common entries in config.py are accessible to all extractors via the basic Extractor class: https://opensource.ncsa.illinois.

 (here you can also see defaults)edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/extractors.py#66
You can implement your own command line arguments to include any special parameters in config.py. Another option is to read them
from environment variables.
the 'messageType' parameter (telling what types of messages to listen for) will go into extractor_info.json and uses a a more MIME-like
definition format.

your extractor will now be an extension of pyClowder2's Extractor class, which contains many useful methods.
init is where you can define custom command line arguments beyond the standard ones.
check_message and process_message now get explicit parameters such as clowder host and secret key, rather than embedding them
in a 'params' object. information about the entity in clowder that triggered the extraction (file, dataset, etc.) is in the 'resource' parameter.
The old 'parameters' is kept for back compatibility, but is deprecated.

As a result of config.py going away, you should provide parameters at runtime
python my_extractor.py --rabbitmqExchange="terra" --rabbitmqURI="rabbitmw.ncsa.illinois.edu/clowder-dev"

new cleaner functions in pyClowder 2 for interacting with clowder, including packages for files, datasets, etc.
OLD - extractors.upload_file_to_dataset(outfile, parameters)
NEW - pyclowder.files.upload_to_dataset(connector, host, secret_key, resource[id' '], outfile)

Migration steps

If there are parameters in config.py that don't use the default values in the link under Key differences, they should be listed as command line
parameters in your new extractor class __init__ or simply coded into the script. It's possible to make the parameters read from environment
variables as well.

https://github.com/terraref/extractors-stereo-rgb/pull/3/files - in this example,
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-6be4f9dea03b90eac1407a1012cdf34eL42 is moved to
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-f53b0090553dbecd9e15f5eb59549c00R32

...and below the self.parser.add_argument the input values can be adjusted before assinging to self.args (e.g. cast a string to an int):
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-f53b0090553dbecd9e15f5eb59549c00R48

Add the messageType from config.py into extractor_info.json
Before: https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-38d737ae3b969ee995bd1b34ebe93be4L25
After: https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-40099abc8fb726838bb4c7a44b8b5958R10

Move your extractor python functions into a new Extractor subclass
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-924a575b0595fcd52d5531433471b109R23 Here a new extractor class
called StereoBin2JpgTiff is created.
main() -> __init__(self) (but only for handling inputs)

https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/extractors.py#66
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/extractors.py#66
https://github.com/terraref/extractors-stereo-rgb/pull/3/files
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-6be4f9dea03b90eac1407a1012cdf34eL42
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-f53b0090553dbecd9e15f5eb59549c00R32
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-f53b0090553dbecd9e15f5eb59549c00R48
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-38d737ae3b969ee995bd1b34ebe93be4L25
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-40099abc8fb726838bb4c7a44b8b5958R10
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-924a575b0595fcd52d5531433471b109R23

2.

c.
i.
ii.
iii.

3.
a.
b.
c.
d.
e.
f.

4.
a.
b.

1.

2.
3.
4.

5.

6.
7.

check_message() and process_message() must be named as such now, and receive explicit inputs:
self, connector, host, secret_key, resource, parameters
typically, old references to parameters['xyz'] can be replaced either with resource['xyz'] or with secret_key, host, etc.
if you aren't sure when writing, you can use print(resource) in your extractor testing to see what fields are included.

Modify old extractor.method() to use the new pyclowder.files.method() or pyclowder.datasets.method()
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/files.py
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/datasets.py
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/collections.py
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/sections.py
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/utils.py
more to come

finally, the call to main() is replaced with a simple instantiation of your extractor class.
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-924a575b0595fcd52d5531433471b109R174
extractor = StereoBin2JpgTiff(); extractor.start()

Registering an Extractor
If you create an extractor and want to register it for widespread use Clowder has a of extractors. To let the community know about your extractor catalog
you may submit it to the catalog (registration required) for publication alongside the extractors created by the Clowder developers, and other Clowder
community developers.

If you haven't registered you may do so at the registration page (to be linked soon). Registration will need to be approved, so this will not be an
instantaneous process. Once approved you will be able to sign in, and submit extractors.
Sign in to the catalog at the .sign in page
Click the Contribute link at the top, or visit the .contribution page
Paste your extractor info into the text box on the contribution page. The extractor info has all the information that we use in the catalog, so having
a fully detailed extractor info is important for the catalog.
Select Extractor from the radio buttons under the text box (Converter is for converting one file type to another, and there may be more options
added for other tools at a later date).
Submit the extractor.
On the home page you may not see your extractor immediately. Once submitted it must be approved by one of the Clowder development team to
show up on the home page. As long as your links to where to get the extractor check out you will likely be approved, and if there are correctable
issues we may contact you.

https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/files.py
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/datasets.py
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/collections.py
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/sections.py
https://opensource.ncsa.illinois.edu/bitbucket/projects/CATS/repos/pyclowder2/browse/pyclowder/utils.py
https://github.com/terraref/extractors-stereo-rgb/pull/3/files#diff-924a575b0595fcd52d5531433471b109R174
https://catalog.clowderframework.org
https://catalog.clowderframework.org/auth/login
https://catalog.clowderframework.org/transformations

	Extractors

