
EUPS User's Guide
User's Guide
For an abridged version (but not a replacement) of this guide see , which contains specific information The Impatient's Guide to DESDM EUPS installation
about installing on OSX (10.7-10.11).

This is the user manual for DESDM's new package management system. It targets both package authors and users that would like to use this package
manager to install software on their systems.

This package management system should run on any Linux machine. Due to the differences of the various Linux distributions (and versions of them) we
cannot guarantee that all the packages will build without errors on every possible machine. We do however automatically test all packages on a set of test
machines running CentOS. In the future additional test systems will be provided.

The DESDM package management system is based on EUPS 1.2.30. EUPS was not modified for DESDM, instead some additional scripts were written to
support some of the use-cases.

1 Nomenclature
2 Installing EUPS

2.1 Prerequisites
2.1.1 Intel Compiler and Math Kernel Library

2.2 Downloading and running the installation script
2.3 Setup Subversion (SVN) access

2.3.1 Subversion (SVN) access problems
2.4 See if eups works

3 Installing Software with EUPS
3.1 How to find the name and version of the software I'd like to install

3.1.1 The 'classical' way
3.1.2 The DESDM way

3.2 Installing by name and version
3.3 Installing by name and pipeline
3.4 Installing a complete pipeline
3.5 Setting up by name and version
3.6 Setting up by name and pipeline
3.7 Setting up a complete pipeline
3.8 List all installed / set-up packages
3.9 What to do if things go wrong?
3.10 Some remarks for those with EUPS experience

4 Creating new packages
4.1 Versioning schema

4.1.1 Product Name
4.1.2 Configset Name
4.1.3 Product Version
4.1.4 Package Version

4.2 Version comparison
4.3 Build script

4.3.1 Rules for build scripts
4.4 Table file

4.4.1 Rules for table files
4.5 Testing a package locally
4.6 Subversion directory layout
4.7 Internal and external Products
4.8 Register a new product
4.9 Package testing on dedicated test machines

5 Trunk Packages
5.1 Installing Trunk Packages
5.2 Updating Trunk Packages
5.3 Creating Trunk Packages
5.4 Depending on Trunk Packages
5.5 Continuous build and test

6 Creating Meta-Products
6.1 Versioning Schema

6.1.1 Product Name
6.1.2 Configset Name
6.1.3 Product Version
6.1.4 Package Version

6.2 Marking a product as 'meta'
6.3 Some remarks for those with EUPS experience

7 Package Life Cycle Qualifiers
7.1 Declaration of Life Cycle Qualifiers
7.2 Validation Checks
7.3 Life Cycle Qualifiers as EUPS Tags
7.4 EEUPS Dashboard Views

8 EUPS User Utilities
8.1 Dependency Updater

8.1.1 Running The Dependency Updater

https://opensource.ncsa.illinois.edu/confluence/display/DESDM/The+Impatient%27s+Guide+to+DESDM+EUPS+installation

8.1.2 Further Options
8.1.3 User Scenarios
8.1.4 Known Issues

8.2 Bulk Propagator
9 Nomenclature
10 Installing EUPS

10.1 Prerequisites
10.1.1 Intel Compiler and Math Kernel Library

10.2 Downloading and running the installation script
10.3 Setup Subversion (SVN) access

10.3.1 Subversion (SVN) access problems
10.4 See if eups works

11 Installing Software with EUPS
11.1 How to find the name and version of the software I'd like to install

11.1.1 The 'classical' way
11.1.2 The DESDM way

11.2 Installing by name and version
11.3 Installing by name and pipeline
11.4 Installing a complete pipeline
11.5 Setting up by name and version
11.6 Setting up by name and pipeline
11.7 Setting up a complete pipeline
11.8 List all installed / set-up packages
11.9 What to do if things go wrong?
11.10 Some remarks for those with EUPS experience

12 Creating new packages
12.1 Versioning schema

12.1.1 Product Name
12.1.2 Configset Name
12.1.3 Product Version
12.1.4 Package Version

12.2 Version comparison
12.3 Build script

12.3.1 Rules for build scripts
12.4 Table file

12.4.1 Rules for table files
12.5 Testing a package locally
12.6 Subversion directory layout
12.7 Internal and external Products
12.8 Register a new product
12.9 Package testing on dedicated test machines

13 Trunk Packages
13.1 Installing Trunk Packages
13.2 Updating Trunk Packages
13.3 Creating Trunk Packages
13.4 Depending on Trunk Packages
13.5 Continuous build and test

14 Creating Meta-Products
14.1 Versioning Schema

14.1.1 Product Name
14.1.2 Configset Name
14.1.3 Product Version
14.1.4 Package Version

14.2 Marking a product as 'meta'
14.3 Some remarks for those with EUPS experience

15 Package Life Cycle Qualifiers
15.1 Declaration of Life Cycle Qualifiers
15.2 Validation Checks
15.3 Life Cycle Qualifiers as EUPS Tags
15.4 EEUPS Dashboard Views

16 EUPS User Utilities
16.1 Dependency Updater

16.1.1 Running The Dependency Updater
16.1.2 Further Options
16.1.3 User Scenarios
16.1.4 Known Issues

16.2 Bulk Propagator

Nomenclature

Term Description

Product A product is a name for a software component. Typical products are 'cfitsio', 'atlas', 'sextractor' and so on.

Package A package is specific version of a product, compiled in a specific way, possibly linking to a specific set of libraries (other
packages).
Are are typically several packages for the same product.

1.

2.
3.

Installing EUPS

Before any packages can be installed, EUPS must be installed. It its highly recommended to use our install script to do this, as it sets some additional
environment variables which will be assumed to be present while working with the package manager. We do not support alternative installation methods.

The installation is a three-step procedure.

Make sure that the system has the prerequisites. This typically involves installing software that, for various reasons, are not managed as
packages.
Download the install script.
Run the install script. The script will interactively ask for the installation path and such.

Each step is described in more detail below.

Prerequisites

If we would track every last bit of software in the package manager, we would effectively build our own Linux distribution. Instead we assume that a Linux
distribution is already in place. This also allows everyone to use our package manager on their already set-up systems. Drawing a clear line between
software maintained in our package system and software we assume to be present is not possible. Some guidelines are described in the package author
section.

It turns out to be quite hard to provide an accurate list of prerequisites (for example: How to reliably detect the minimum version of libc needed by
sextractor?). The following list is updated with the current state of our knowledge.

Dependency Used by RHEL / centOS package (if known) OSX

python (some old version will do) Package management system itself python -

wget Package management system itself wget wget ()install wget from source

curl Package management system itself curl curl (install instructions soon)

unzip oracleclient 11.1.0.7 unzip -

zlib libpng 1.2.38, python 2.7.3 zlib zlib-devel zlib

bzip2 python 2.7.3 bzip2 bzip2-devel bzip2

libfreetype plplot 5.8.0 freetype freetype-devel freetype ()install freetype from source

libX11 plplot 5.9.9 libX11 libX11-devel

libXau plplot 5.9.9 libXau libXau-devel

libxcb plplot 5.9.9

libXext plplot 5.9.9 libXext libXext-devel

libxpm root 5.26.00 libXpm libXpm-devel

libXft root 5.26.00 libXft libXft-devel

libcrypt python 2.7.3 openssl openssl-devel glibc-devel

libaio oracleclient 11.1.0.7 libaio libaio-devel

libfreebl3 python 2.7.3 nss-softokn-freebl nss-softokn-freebl-devel

libnsl python 2.7.3 glibc-devel

gcc various packages gcc gcc-c++ make autoconf patch Apple Xcode 5.1.1 ()dmg

gfortran atlas 3.8.4, netlib-lapack 3.4.1 gcc-gfortran version >= 4.8.2 ()gfortran dmg

pkg-config glib 2.29.2 pkgconfig install from source instructions

subversion Package management system itself svn (subversion on rhel5) -

rsync unitRunning 0.0.11 rsync rsync

tar desdm_eupsinstall.py tar

We optionally support Intel's ICC and MKL (see the next section)

Intel Compiler and Math Kernel Library

Some users are interested in using the compiler from Intel and Intel's math library. But since not everyone has access to those commercial products they
are optional. If they are to be used, they need to be installed manually in advance. We cannot distribute ICC and MKL via EUPS for licensing reasons.

The following table lists the minimum versions required. Note that gcc and gfortran are still required since not all packages might support ICC and MKL
(earlier versions of sextractor for example).

https://opensource.ncsa.illinois.edu/confluence/display/DESDM/Installing+wget+from+source
https://opensource.ncsa.illinois.edu/confluence/pages/viewpage.action?pageId=61604031
https://developer.apple.com/devcenter/download.action?path=/Developer_Tools/xcode_5.1.1/xcode_5.1.1.dmg
https://gcc.gnu.org/wiki/GFortranBinaries
https://opensource.ncsa.illinois.edu/confluence/display/DESDM/Installing+pkg-config+from+source+for+OSX

Dependency Used by

icc (>=11.1) sextractor (icc&mkl build only)

mkl (>=10.3) sextractor (icc&mkl build only)

ICC and MKL can only be used in combination.

Downloading and running the installation script

The latest version of the installation script is available here: .http://desbuild2.cosmology.illinois.edu/desdm_eupsinstall.py

You can download it with wget (wget is a prerequisite, so you should have it installed by now).

 $ wget http://desbuild2.cosmology.illinois.edu/desdm_eupsinstall.py

After that, run it with python:

$ python desdm_eupsinstall.py

and follow the instructions.

It will ask for two installation paths. One for EUPS itself and one for the software installed via EUPS packages. It will also ask if ICC and MKL should be
used (which leads to a set of additional questions). The script can also modify the login-scripts to setup EUPS every time you log in. After confirming the
settings the script will download and install EUPS.

During the installation procedure a bash and a c-shell script are generated which setup the environment variables required to use EUPS. The installation
script output tells you where the files are and how to 'source' them.

The script performs some rather primitive checks on the prerequisite. There is no guarantee that all prerequisites are in place just because the script
completes. It is just a help to detect some common issues.

Setup Subversion (SVN) access

The source code of some packages is directly fetched from subversion upon installation of the package. This requires read access to the subversion
repository on . Further more subversion must be configured in a way that allows access to this https://dessvn.cosmology.illinois.edu/svn/desdm/devel/
repository without interactively asking for the user's password. Otherwise the package installation will block for ever as EUPS does not support interaction
with the user during a package installation.

The simplest way to set this up is to run the following command:

$ svn info $SVNROOT

If it just runs though and prints out some information about the current state of the repository then everything is setup correctly. If not, it will ask the user for
input. Typically two questions appear:

Error validating server certificate.... (R)eject, accept (t)emporarily or accept (p)ermanently? Enter 'p' to ensure that the question won't
reappear.
Username & Password: SVN asks first for the password, using the wrong username. Just press enter. It will then ask for the username and for the
password. Agree to store the password.

Subversion (SVN) access problems

If you forgot your password, it might be stored as plain text in your home directory space under:

$HOME/.subversion/auth/svn.simple/

If you still have problems accessing SVN you can get help here :filling out this form

See if eups works

As a quick check to see if EUPS was properly installed and the environment is set-up correctly you can try

$ eups --version
EUPS Version: 1.2.30

also running the following command shows you all packages currently available:

http://desbuild2.cosmology.illinois.edu/desdm_eupsinstall.py
https://dessvn.cosmology.illinois.edu/svn/desdm/devel/
http://desdm.wufoo.com/forms/help-me-with-my-desdm-account/

$ eups distrib list

Check that the subversion repository can be accessed without interaction:

$ svn info $SVNROOT

This will print some information about the current state of the repository which isn't very interesting at this point. The idea is to check that this works without
asking for any kind of input such as a password.

Installing Software with EUPS

Once EUPS is installed, installing packages should fairly easy. You tell EUPS the name of the product you'd like and which version and EUPS installs that
piece of software. EUPS also recursively installs all dependencies in the proper order. After the product is installed it needs to be activated before it can be
used. We call this 'setup'.

How to find the name and version of the software I'd like to install

The 'classical' way

Run this command:

$ eups distrib list

It lists all packages currently available in the package repository. While this works, it is often not that helpful to find the right package as there will be
several versions of each product.

The DESDM way

As part of our continuous integration efforts web pages are generated automatically to reflect the current state of the package repository. They can be
found here (might be worth a bookmark):

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/products

On the left side is a list of all products. The matrix on the front page shows which versions of each product is used in a particular pipeline version. Clicking
on a product name lists all the versions available of that product. Colors indicate if the automated build tests have found a problem with a particular
package.

Installing by name and version

Once the name and version of the package is known, installing is just a single command:

$ eups distrib install NAME VERSION

for example to install version 2.17.0+0 of runsextractor

$ eups distrib install sextractor 2.17.0+0

It will automatically trigger the installation of atlas and fftw.

Installing by name and pipeline

There is also a little shortcut. For example if you would like to install the version used by firstcut-stable, you can directly run (pipeline names are sextractor
always in upper-case):

$ eups distrib install sextractor -t FIRSTCUT-stable

EUPS will look up the version number for you, based on the -t argument. EUPS will behave exactly as if the package was installed by explicitly giving the
version number.

Installing a complete pipeline

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/products

Instead of installing an individual package it is also possible to install all packages that belong to a certain pipeline with a single command:

$ eups distrib install FIRSTCUT -t FIRSTCUT-stable

This will make sure that all packages which are directly or indirectly used by firstcut-stable are installed.

Setting up by name and version

After installation the software is compiled and installed in its very own directory structure. Before it can be used the environment variables need to be set-
up:

$ setup NAME VERSION

For sextractor this might look like this:

$ setup sextractor 2.17.0+0

This will ensure that the PATH environment variable includes the correct version of sextractor.

Setting up by name and pipeline

The same shortcut used for installing can also be used for setup:

$ setup sextractor -t FIRSTCUT-stable

A package can also be un-setuped. This helps to keep the environment variables clean.

$ unsetup sextractor

Setting up a complete pipeline

Corresponding to the install commands it is also possible to setup all packages that belong to a certain pipeline:

$ setup FIRSTCUT -t FIRSTCUT-stable

List all installed / set-up packages

To get a list of all packages currently installed on the local system execute:

$ eups list

Those that are currently setup are marked with 'setup'.

What to do if things go wrong?

Should a package fail to install properly, or if the environment gets wrongly setup for a package, please report it! One of the main motivations for this
package management system is to solve each software deployment problem once in the consortium, instead of once per collaborator. If problems are
reported, the package authors will look at it personally and make sure that the same problem will not occur anymore for anybody else.

Please report all issues to .JIRA

The JIRA is setup with several projects and components to which tickets can be added. The important thing is to have a ticket, we will move it should it
land in the wrong component, as it is sometimes not clear where a problem fits.

We have a continuous integration system in place that automatically performs build-tests on a set of test machines. If you encounter problems building the
packages on your machines it might make sense to dedicate a representative machine for continuous integration. That way the package authors get
automatic feedback should a package fail on your machines.

The eups distrib install command hides the output of the build script, only printing the last few lines of the output in case of a failure. This makes it hard to
track down the cause. The complete output is stored a log file in the directory:

http://dessvc.cosmology.illinois.edu:8080/secure/Dashboard.jspa

 $EUPS_PATH/EupsBuildDir/Linux64/[PRODUCT]/[VERSION]/[PRODUCT].log

This this directory is deleted if the install was successful, so the log file only exists on failure.

TODO: how to open a JIRA ticket for this

Some remarks for those with EUPS experience

The '-t' option used above stands for 'tag', a EUPS feature we use in a very specific way in DESDM. Special meta-products, typically named after
pipelines, automatically create a tag for each package they, directly or indirectly, depend on. This allows the above use-cases where a pipeline name is
used instead of a specific version number. Installing the meta-product itself installs the hole pipeline. In this case too it makes sense to use the '-t' trick to
specify the version.

Creating new packages

The package generation procedure applied in DESDM is quite different from the one used on stock EUPS. For one thing you don't need any EUPS
commands at all. The process is tightly integrated with our continuous build system.

Every package on our repository server is defined in subversion. The repository is server automatically synchronized with subversion. Thous to create a
package in our repository, you need to make the right changes in subversion. You may use any subversion tools and methods you like to do this.

The package authors has to provide:

The name of the product
The version number of the package
The build script
The table file

The build script contains the instructions of how to build and install the package. The table file lists the dependencies and contains instructions to setup the
environment variables for the software to work.

Versioning schema

The full identity of a package consists of the name and the version. The version is further divided in the product version and the package version.
Optionally a configset name can be specified. The product version tracks changes in the code, where as the package version tracks changes in the build
and table files. The configset is used if the same software is build in different variants (for example with different parameters passed to)../configure

The full identity of a package is given by:

PRODUCTNAME PRODUCTVERSION+PACKAGEVERSION

in the usual case where no configset is required. If there is a configset it is appended to the product name with an underscore.

PRODUCTNAME_CONFIGSET PRODUCTVERSION+PACKAGEVERSION

Lets look at a few examples:

Product Name Configset Product Version Package Version

cfitsio 3.300+0 cfitsio 3.300 0

libjpeg 6b+1 libjpeg 6b 1

altas_netlib 3.8.4+2 atlas netlib 3.8.4 2

Product Name

The product name is an non-empty string that may contain the following characters:

a-z, A-Z
0-9

No spaces, slashes, (under)scores, or any other special characters are permitted.

The package name should be all-lowercase. Camel-case can be used if required for readability.

Configset Name

Most packages won't have a configset name. The configset is used if the same software needs to be compiled in several variations. This is rarely needed.
If possible one should try to create a single package that works for all the usecases.

configset names follow the name naming convention as the product name.

1.

2.
3.

1.
2.
3.
4.

Product Version

A difference in the package version indicates a change in the source code.

The package version must be of the form . All the components are optional. Each component may contain the PrefixAAA.BBB.CCC-LLL.MMM.NNN
following characters:

a-z, A-Z
0-9

The product version has a special meaning (see below) and should not be used for product releases.trunk

The product version is typically selected by the developers of the software. For third-party libraries it is strongly recommended to use the version under
which the software was released without any changes as the product version.

Package Version

If two packages only differ in the package version, the source code is the same, but either the build or the table files is different. The most common
reasons to increase the package version are:

Bug fixes in the build file or table file.
Changes of the dependencies listed in the table file. Especially common is the case where one of the dependencies is replaced to a newer
version of the same product.

At the moment the package version is a single integer which must increased at every change of the build or table file. Whenever the product version
changes, the package version must be reset to zero.

Version comparison

Versions of the same product have to be compared in order to keep track of the latest one. Comparison is limited to versions of the same package. The
sorting rules are as follows:

The elements are split on (or) and compared as integers or alphabets. In case if two elements are not same (for example '2a' and . _, +, -
'ab'), then the integer is given the preference over the alphabet otherwise each element(string on numbers) is compared with the other when
same (in 'ab' and 'a2', 'ab' with 'a' and ''(nothing) with '2').
Alpha and beta versions are considered as earlier versions (3.14.0a < 3.14.0b < 3.14.0)
If the two product versions are equal then the packageversion decides the earlier version (3.14.0+1 < 3.14.0+2)

Build script

For DESDM we use EUPS in a rather simplistic way. Each package is build and installed by execution of a bash script written by the author. It contains the
instructions to build the software from its source and install it. You can do about everything in that bash script. Typically the script will roughly perform the
following steps:

Fetch the source code from somewhere
./configure
make
make install

Take for example the build script of cftisio 3.300+0:

wget $EXTERNAL/$PRODUCT/$PRODUCT-$VERSION.tar.gz
tar xzf $PRODUCT-$VERSION.tar.gz
cd cfitsio
./configure --prefix=$PRODUCT_DIR
make
make install

The web-reports of the repository show the build script for every package . It http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/products
might be a good idea to peek at similar packages to see how they are doing it.

There are some environment variables that can be assumed to be present in every build script:

Variable Description Example Value
w/o configset

Example Value
w. configset

EXTERNAL URL to the place were the
tarballs
of external dependencies are
stored.

http://desbuild2.cosmology.illinois.edu/eeups/webservice
/resources/

http://desbuild2.cosmology.illinois.edu/eeups/webservice
/resources/

SVNROOT URL to the subversion
repository.

https://dessvn.cosmology.illinois.edu/svn/desdm/devel/ https://dessvn.cosmology.illinois.edu/svn/desdm/devel/

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/products
http://desbuild2.cosmology.illinois.edu/eeups/webservice/resources/
http://desbuild2.cosmology.illinois.edu/eeups/webservice/resources/
http://desbuild2.cosmology.illinois.edu/eeups/webservice/resources/
http://desbuild2.cosmology.illinois.edu/eeups/webservice/resources/
https://dessvn.cosmology.illinois.edu/svn/desdm/devel/
https://dessvn.cosmology.illinois.edu/svn/desdm/devel/

SVN_PATH Relative path to the root
folder of
the source inside the
product's SVN
directory.

tags/3.8.4+0 tags/3.8.4+0

PRODUCT Name of the product. For
historical
reasons the configset is
appended.

atlas atlas_netlib

VERSION Version of the product. 3.8.4 3.8.4

PKG_VERSION '+' part of the package version. 1 1

FULL_VERSION The complete package
version

3.8.4+1 3.8.4+1

FLAVOR The flavor of the system
where the
package is installed.

Linux64 Linux64

PRODUCT_DIR The base directory into which
the
package must be installed.

[...]/Linux64/altas/3.8.4+1 [...]/Linux64/altas_netlib/3.8.4+1

[DEPENDENCY]
_DIR
(for example
 CFITSIO_DIR)

For every package this
package
depends on, there is at least
this
environment variable. It
points
to the directory that was the
PRODUCT_DIR of that
package.

[...]/Linux64/cfitsio/3.300+0 [...]/Linux64/cfitsio/3.300+0

If your package as dependencies (listed in the table file, see below), then all those packages will be installed and set-up before the script is executed. You
can assume that all environment variables set by the table files of the dependencies are available.

You can also assume that all tools and libraries listed as prerequisites in the install chapter of this manual are present. You may also use tools that are
available on every Linux distribution, such as tar.

Rules for build scripts

You may use the current directory to store temporary files. For example to unpack and build the source. The directory will be deleted after the
installation.
Install into $PRODUCT_DIR. The directory is created before the build script is executed.
Do NOT make ANY modifications outside either the current directory or the directory pointed to by $PRODUCT_DIR what so ever!.

Table file

The table files serves two purposes: It lists the dependencies of the package and it contains the instructions to setup the environment before the software
in the package is used.

Note that even if the table file looks a bit like a bash script on first sight, they are not. Regular bash commands will not work.

Command Description Examples

setupRequired Declares a dependency.
Only direct dependencies need to
be listed. EUPS will traverse
them recursively.

setupRequired(libpng 1.2.38+0)
setupRequired(libjpeg 6b+0)

envPrepend Adds a path in front of an environment
variable. If the variable is not yet set
it is set to the given path.

envPrepend(PATH, ${PRODUCT_DIR}/bin)

envAppend Adds a path to the end of an
environment
variable. If the variable is not yet set
it is set to the given path.

endAppend(LD_LIBRARY_PATH, ${PRODUCT_DIR}/lib))

Rules for table files

DO NOT USE version ranges. EUPS has some support to specify version ranges with setupRequirement. DESDM does not support this. Always
specify the exact version. This ensures that we build packages exactly the same way everywhere, making installations reproducible.
Always use curly brackets around variables. EUPS will not work without them.
Use envPrepend instead of envAppend. This is important as it ensures that we really ending up using the software in the package and not some
other installation that happens to be installed on the machine.

Testing a package locally

Before adding the package to subversion (and thereby to the package repository server) it is often advantageous to test the package first on the local
machine. We provide a tool that creates and installs a package locally using the same methods used to create the packages in the repository.

The tool is available on the package repository itself. Thous, before it can be used it needs to be installed (once only) and set-up:

$ eups distrib install eeups -t EEUPS-stable
$ setup eeups -t EEUPS-stable

The tool is most simple to use if both the build and table file are in the same directory and are named PRODUCTNAME.build and PRODUCTNAME.table.
This is typically the case when preparing a package following the subversion directory layout described below.

From the directory containing the build and table file run

$ eeups_build PRODUCTNAME

This creates, builds and installs the package locally. The version will be 'dev+0' to indicate that this package was not installed from the eups repository
server.

The command has essentially the same effect as to commit the package to subversion, wait for it to appear on the package repository server and then
execute 'eups distrib install PRODUCTNAME dev+0'. Only that neither subversion nor the package repository is changed in anyway (nothing is leaving the
machine). Also it is not possible to add packages with 'dev' as their package version to the eups repository server.

The tool has some other options for example to install the package in a separate place instead of the default location. You may also specify other locations
of the build and table files. Use

$ eeups_build --help

To get a documentation of all options.

The eeups_build command hides the output of the build script, only printing the last few lines of the output in case of a failure. This makes it hard to track
down the cause. The complete output is stored a log file in the directory:

$EUPS_PATH/EupsBuildDir/Linux64/[PRODUCT]/[VERSION]/[PRODUCT].log

This this directory is deleted if the install was successful, so the log file only exists on failure.

Subversion directory layout

All packages in the package repository originate from subversion. Thous the proper way to modify the package repository is to modify the subversion
repository. The package repository will be updated to reflect any changes in subversion. It is important to stick to this layout to ensure that the packages
can be located by the synchronization scripts.

The required layout builds on top of the usual trunk/tags/branches layout commonly applied in subversion. The same layout is used for products where the
source code is maintained in the subversion repository and for third-party products where the source code is stored outside. In the first case the code will
be stored in parallel to the build & table file. In the second the build and table files will be the only files in the directory structure.

For each product a directory must exist in subversion. It should, but must not, be named like the product (for example 'cfitsio'). The location of the
directory is not important. It has to be stored in the configuration file (see below).
Inside this product directory a sub-directory called 'tags' is expected.
Inside 'tags' packages will be created for every sub-directory with a name that follows the PRODUCTVERSION+PACKAGEVERSION schema
described in an earlier section.
Within the tag the build and table files are expected. They have to be named as follows:

PRODUCTNAME.build and PRODUCTNAME.table for packages without a configset.
PRODUCTNAME_CONFIGSET.build and PRODUCTNAME_CONFIGSET.table for packages with a configset

In the special case of trunk-packages (see below) the trunk directory is also scanned and a package will be created if a build and table file are
present.

Example for cfitsio

.../cfitsio/
 tags/
 3.280+0/
 cfitsio.build
 cfitsio.table
 3.300+0/
 cfitsio.build
 cfitsio.table
 3.300+1/
 cfitsio.build
 cfitsio.table

This would create three packages with versions 3.280+0, 3.300+0 and 3.300+1.

Example for atlas

.../atlas/
 tags/
 3.8.4+0/
 atlas.build
 atlas.table
 atlas_netlib.build
 atlas_netlib.table
 3.8.4+1/
 atlas.build
 atlas.table
 atlas_netlib.build
 atlas_netlib.table

This would create four packages, two without a configset and two with configset 'netlib'. The versions would be 3.8.4+0 and 3.8.4+1.

The layout is chosen such that one can simply keep the build and table file in the base directory of the source code (directly in trunk). They will end up in
the right place once the trunk is tagged. One must follow the usual rule not to make changes into an existing tag. Instead make a new tag (typically with an
incremented package version).

The location of this directory tree inside the subversion repository is not important. As a convention, all products where the build & table files are not
maintained in the same directory tree as the source-code are located under . https://dessvn.cosmology.illinois.edu/svn/desdm/devel/eupsScripts/external
Those are mostly third-party products and internal products where we'd like to keep code and build/table separated (at least for a while).

Internal and external Products

The above structure containing the build and table files can either be stored separtely from the source or it can be the same structure in which the source
code is maintained. The later implies that the development team uses the desdm subversion repository to manage the source-code. Obviously this is not
the case for all products which are not developed within the consortium, such as cfitsio. We call those external products. They still have their directory tree
within the desdm repository, but it will only contain the build and table files.

If the build and table files are stored in the same directory tree as the source code, we call them internal products. Internal products have the advantage
that the maintainance of the build and table file becomes a natural part of the software development. Developers are encuraged to keep an up-to-date
version of the build and table file in the trunk directory, changing it along with the source code if necessary. This package management system will ignore
those files within the trunk since it only looks for tags. The advantage of keeping them in the trunk directory is simple: Once the software is ready for
another release, just create a tag in the usual subversion way, that is by copying the trunk into a tag directory. The package management system will
detect that tag, and the build and table files within, and create a new package. This is quite handy for the develpers as they don't have to do any additional
effort to create a package beyond creating the subversion tag that they have to create anyway.

There are a few special applications of the above. Some products are treated like external ones, even though their source code is managed in the same
subversion repository. In other words such products have two directory trees: one storing the source code and one storing the build and table files. This
creates a clear separation of source-code and package management. We apply this in cases where the development team does manage the build and
table files them selves. As long as the new package management system is still in development, we do this for all packages. The goal is to migrate those
into 'internal' products, with just one directory tree, as soon as the new system is ready and the development team were instructed.

Another, very rare, case are packages that are not developed in the consortium, but that have the source (or binaries, if the authors don't provide the
source code) in our subversion repository anyway. The package maintainer needs to fetch the code from the authors and check it in. Typically the tarball it
self is stored in subversion directly. The motivation is that the usual way, uploading the tarball to our webserver, has the draw back that the webserver is
publically accessible, where as our subversion repository is protected. We only do this for products where the licence does not allow public redistribution.

Register a new product

Each product needs to be registered in the configuration file. It points the scripts to the directories where it will start scanning the directory layout described
above for packages.

The configuration file is stored inside subversion it self: https://dessvn.cosmology.illinois.edu/svn/desdm/devel/eupsScripts/external/eups.cfg

https://dessvn.cosmology.illinois.edu/svn/desdm/devel/eupsScripts/external/eups.cfg
https://dessvn.cosmology.illinois.edu/svn/desdm/devel/eupsScripts/external/eups.cfg

1.
2.
3.

In the [products] section, add a line for the new product. It must have three parts separated by one or more white-spaces:

Name of the product
Product directory in subversion. This is the path that points to the directory layout described above.
An email address of a person that can be contacted if there is a problem with the packages from this product.

There are many products already declared which can be used as a reference.

Package testing on dedicated test machines

In DESDM we apply continuous build. Each package on the package repository is automatically build on a set of test machines. Those test machines are
selected to represent the various environments where the software needs to run. This gives the developers / package maintainers an early feedback
should the package fail to build on a certain hardware type or linux distribution. We are currently building up the set of test machines used for this.

The results of the continuous build are displayed here:

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/

The current version of the webreport has a small bug: Packages will always be marked OK (green) during the time after creation and before the build
servers have completed their build-test (the package status is OK during that time because no error has been reported). Once the build results come in,
the status might change to ERROR (red). Always check the details of the package to see if all builds have already completed.

Remember not to change an existing EUPS tag when fixing bugs reported in the build tests. Always create a new package. It is perfectly OK to have old
packages fail in a product. Most products have, or will eventually have, such obsolete, failing packages. The webreports show the packages with the
highest package versions (the number after the '+').

Trunk Packages

In general the package management system follows the principle that a package is never changed once created. Trunk-packages are the exception to this
rule.

A trunk package is a package for the code that is currently in the directory of that product's subversion tree. The package is named as follows:trunk

Product name: imsupport
Product version: trunk
Package version: +0

Since the trunk code is volatile, so is the package. The is never incremented!+0

Installing Trunk Packages

Trunk packages are installed the same way as all other packages:

eups distrib install imsupport trunk+0

The difference is that the current source code from the trunk svn-directory (instead of an svn-tag) is exported, built and installed (Note: the package author
has to make this true in his build script). This implies that the time when the command is executed matters. If a trunk package is installed eups distrib
on two machines on two different days, they will very likely build with different source code.

Updating Trunk Packages

With regular packages there is no update routine required, as they never change. One just installs the newer version of the product. Since trunk packages
are changing, one might have the need to update it.

We are currently planning a tool for this. But for the moment the following procedure can be used:

eups undeclare imsupport trunk+0
eups distrib install imsupport trunk+0

This causes a re-install of the package (which will use the current code from subversion). Note that this procedure does not handle dependencies. One
has to manually decide which depending packages need rebuilding as well. In the case of one might need to apply the same procedure to imsupport imd

 afterwards as well.etrend

Creating Trunk Packages

Trunk packages are equal to regular packages in almost all aspects. A configuration file must be placed in the product's subversion directory eups.cfg
and the flag must be set:trunk_package

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/

.../imsupport/
 eups.cfg
 tags/
 ...
 trunk/
 imsupport.table
 imsupport.build

The content of the eups.cfg must contain:

[product]
trunk_package=True

Natrually the build script of a trunk package must export the source from the trunk. It might be helpful to use the SVN_PATH
environment variable which is available in all build scripts.

svn export $SVNROOT/imsupport/$SVN_PATH imsupport
cd imsupport
./configure
make
make install

$SVN_PATH is set to for trunk packages and set to for regular packages. This way the build scripttrunk tags/$FULL_VERSION
does not need to be changed when copying the trunk to a tag directory when releasing the software.

it is highly recommended to have the source code in the same trunk directory as the build and table files. Our continuous integration
scripts can only detect a change to a package if the change happens in the directory where the build and table files are stored. This is called an 'Internal
Product'. See above.

Depending on Trunk Packages

Using packages can depend on each other. Trunk packages can depend on other packages as they wish, but there is one important rule:setupRequired

Non-trunk package must NOT depend on trunk packages. A regular package represents a very specific, unchangable version of a software. This would
no longer be given if somewhere in its dependency tree a package could change. Therefore they must never depend on trunk packages or we break
provenance.

Trunk packages are allowed to depend on other trunk packages as well as regular packages.

Eventually the system will enforce this rule. For the moment this is in the responsibility of the package author.

Continuous build and test

If the source of a trunk package changes, that is, someone makes a commit to the trunk, then this triggers automatically a new build and a new run of the
tests.

If other packages depend on this trunk package, then those are rebuild and retested as well. This results in true continuous integration testing, where the
software is automatically tested not only for itself, but also if it still works together with the other packages.

Build and test reports are listed on the package's build information page in the .Web-Reports

Creating Meta-Products

Meta-Products simplify the selection of packages. On the package repository there is an ever increasing number of products available in an ever
increasing number of versions. Some products might even be available in different configurations. This makes it difficult to find the right version, especially
since several versions of a product might be in use at multiple places simultaneously (production, testing, development, ...).

A meta-product is a regular product with a special use-case and a few special conventions. Which will be explained in this section.

As with regular products, meta-products have packages. Those are called meta-packages. Meta-products typically don't contain any software (but they
could). The main 'content' of a meta-package are its dependencies. The dependencies of a meta-package group together a set of other packages that
form a logical unit. In DESDM we have a meta-product for each pipeline. It groups together (depends on) all the software required to run this pipeline.

Meta-Products serve two main use-cases:

Installation of all packages required to run the complete pipeline.
Installation of a single package out of a pipeline, by specifing the product name and the pipeline name. The exact version of the package is
inferred from the pipeline.

http://deslogin.cosmology.illinois.edu/eupsroot/ci/

Meta-package typically have an empty build script (but the file still needs to exist) and a comparatively large table file.

All indirect dependencies (packages on which packages in the meta-package's table file depend on) are automatically part of the meta-product.

Versioning Schema

Meta-packages follow the versioning schema of normal packages. However some additional guidelines exist:

Product Name

The name of a meta-product should be all upper-case to discriminate it from normal products which should be lower-case. Typically the name of the meta-
product equals to the name of the pipeline (e.g. 'FIRSTCUT').

Configset Name

Configsets are currently not used for meta-products.

Product Version

The product version should represent the status of the pipeline. It could be a number, but also a descriptive word. For example:

'stable'
'production'
'beta'
'testing'
'development'

It probably makes sense to agree on a common set of product version descriptors for all pipelines. We still need to do this.

Package Version

Incremented integer as with normal packages.

As with regular packages, once a package is created it it never changed. With meta-products, changes typically result from 'promoting' a software package
to a certain version of a pipeline. Iin other words, the dependencies of the meta-product change. As with regular packages, this results in an incremented
package version.

Marking a product as 'meta'

Meta-products follow the exact same layout in subversion. To mark a product as a meta product add a 'eups.cfg' file into the product's root directory in
subversion:

.../FIRSTCUT/
 eups.cfg
 tags/
 stable+0/
 cfitsio.build
 cfitsio.table
 stable+1/
 cfitsio.build
 cfitsio.table
 development+100/
 cfitsio.build
 cfitsio.table

The content of the eups.cfg must be:

[product]
meta_product=True

Some remarks for those with EUPS experience

The DESDM system automatically creates a EUPS-tag for each meta-product and product version.For example there might be a tag for 'FIRSTCUT-stable'.

All packages, directly or indirectly, referenced from the meta-package with the highest package version is added to that EUPS-tag. For example the tag
'FIRSTCUT-stable' might correspond to the package 'FIRSTCUT table+5', if there is no other package with a higher package version.

The EUPS-tags are the only component in the package management system which changes over time (they are replaced when a package with a higher
package version is created). This is ultimatively the reason why a user can write for example

eups distrib install FIRSTCUT -t FIRSTCUT-stable

and be sure to get the 'current' versions without explictly knowing them.

Package Life Cycle Qualifiers

Each package is given one of the following 'life cycle' qualifiers:

OPERATIONAL (O)
DEPRECATED (D)
EXPERIMENTAL (E)

Based on these qualifiers, the the continuous integration build system can perform validation checks, can set tags for eups packages distributed through
the distrib server. Furthermore, the webpages can be filtered for specific qualifiers - hence, help navigating in the thousands of packages we now have in
the system.

Declaration of Life Cycle Qualifiers

Default qualifiers:

 • Packages defined in the tags directory (of a given product) are identified as OPERATIONAL.

 • Packages defined in the trunk or branches directory (of the given product) are identified as EXPERIMENTAL.

These defaults can be overruled for packages defined in the tags directory as follows:

 • DEPRECATED packages can explicitly be declared in the eups.cfg file defined at product level.

 • EXPERIMENTAL packages can be declared by appending an 'E' to the package version (e.g. eeups-1.4.3+4E). Note that this is not necessary for
trunk and branch packages.

DEPRECATED packages can be declared in the eups.cfg file by the following syntax:

deprecated = 1.2.3+10; 3.2.1+0; [5.2+3,6.3+2]; [6.5+0,6.6+3); [8.8+1,*), (*,1.2+1]

Actually, for the ranges, a suitable ordering of the versions is adopted (the same ordering that you can see on the per product view in the eeups
dashboard. Angular brackets indicate that boundary versions included, round brackets that boundary versions are excluded.

The * in [8.8+1,*) means that any version above (and including) 8.8+1 is included or, accordingly in (*,1.2+1] that any version below (and including) 1.2+1
is included.

Different versions or ranges of versions specified per qualifier are separated by a semi-colon (;).

Validation Checks

The validation checks will be based on the following rules:

 • a package with qualifier O must not depend on E. Otherwise, the package will receive status=ERROR

 • a package with qualifier O should not depend on D. Otherwise, the package will receive status=WARNING.

The result of these checks will be reflected in the package state and the package states are presented in the EEUPS Dashboard web pages.

Life Cycle Qualifiers as EUPS Tags

Furthermore, the qualifiers are reflected on the EUPS Distribution Server in form of according EUPS tags. It means that by eups distrib list -t
'OPERATIONAL' the operational versions can be listed. A dedicated package distribution service should serve exclusively only OPERATIONAL package
versions to the DES user community.

Not yet implemented.

EEUPS Dashboard Views

The EEUPS Dashboard (see) views can be filtered for these qualifiers http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/
(OPERATIONAL, EXPERIMENTAL, DEPRECATED, ALL). By default, the filter will be set to OPERATIONAL.

Not yet implemented.

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/

EUPS User Utilities

User utilities support users in interacting with the EUPS system. Typical examples are utilities for creating new packages or for propagating version
updates of a give package all the way up through the dependency tree.

All these tools are shipped as part of the eeups product:

$ eups distrib install eeups -t EEUPS-stable
$ setup eeups -t EEUPS-stable

or for a specific version to obtain new features in beta release status:

$ eups distrib install eeups 1.4.3+2
$ setup eeups 1.4.3+2

With the exception of trunk packages (see below), packages never change. If one releaes a new version of product, then all the other products that
depend on it likely need a new + version as well, as one wishes to update its dependency. If a package 'at the bottom' of the dependency graph is
released, many such new packages may have to be created. This is a time consuming and error-prone process to do manually.

Two different versions of package propagation tools exist:

Dependency Updater (pkg_propagator): Used for updating updating a given package for version updates of a direct or indirect dependency.
Bulk Propagator (eeups_propagator): Used for propagating version updates in the bulk of all packages.

The following rules hold true for both propagator tools:

Existing packages are not modified.
For each product-productversion at most one new + version is introduced, even if several changes have to be applied to it.
Newly introduced + versions are copies of the previous + versions. The only changes are applied to the table files (entries setupRequired(..)
) to reflect changes in the dependencies.
No new dependencies are added, nor are dependencies removed. They may be replaced by different versions.

Dependency Updater

Running The Dependency Updater

The typical user scenario looks as follows: Create a new version of a given 'reference' package by replacing one or several of its direct or indirect
dependencies by a new version.

Let's give a hypothetical example. Assume that you would like to to create a new diffimg version by replacing in diffimg-8.0.28+2 the indirect dependency
python-2.7.6+1 by the updated version python-2.7.7+0. This will assume that you have already added python-2.7.7+0 into the system (which is not at the
time of writing). Then you can run the following command:

$ pkg_propagator --replace python-2.7.6+1 --by python-2.7.7+0 --reference diffimg-8.0.28+2

This results in the following steps:

Step 1: Identify new package versions

The tool does not interact with a local eups repository. Hence, you don't need to first have the 'old' diffimg version installed in your environment. Rather,
the tool fetches the information on new packages to be created from the webserver () and prints them to the console.

In the given example, the relevant parts in the dependency graph are

diffimg-8.0.28+2
--- coreUtils-0.5.2+4
 --- psycopg-2.4.6+4
 --- python-2.7.6+1
 --- cxOracle-5.1.2+8
 --- python-2.7.6+1

The new packages proposed by the system would be the following:

diffimg-8.0.28+3E
--- coreUtils-0.5.2+5E
 --- psycopg2-2.4.6+5E
 --- cxOracle-5.1.2+9E

where psycopg-2.4.6+5E and cxOracle-5.1.2+9E would have dependencies on python-2.7.7+0. The 'E' appended to the package version indicates that by
default EXPERIMENTAL packages are created. On the console, you would see something like:

cxOracle-5.1.2+8 ==> cxOracle-5.1.2+9E
psycopg2-2.4.6+4 ==> psycopg2-2.4.6+5E
coreUtils-0.5.2+4 ==> coreUtils-0.5.2+5E
diffimg-8.0.28+2 ==> diffimg-8.0.28+3E

Note that if there would already be a psyopg2-2.4.6 version with the same dependencies as psycopg-2.4.6+4 but the new python version and identical
build file there would be no need to create a new package version for psyopg2-2.4.6. This is recognized by the system and no new psyopg2-2.4.6 package
version would be proposed. This means that if you specify a reference and a package to be replaced for which a propagated version already exists no
propagation is performed.

Furthermore, it gives you a warning for those 'existing' packages (in the propagated graph) that have not status OK (or INCOMPLETE). Propagating
packages that have already some known problem in one of its dependencies might not be a good thing to do.

Step 2: Checkout old packages and create the new packages

On the command line you are asked whether you want to proceed with the checkout. When confirming that with 'yes' the old package versions to be
replaced are checked out from SVN to the current directory - unless another directory has been specified with the --workdir parameter (see below). Then,
the proposed new package versions are created in the local checkout directory. Note that changes are committed automatically!not

Step 3: Manually check/modifiy the changes

After the checkout has completed and the changes have been applied to the working copies, the tool exits. It does not commit the pkg_propagator
changes directly.

The user can now look at the modified working copies and inspect the work done by . All changes are already marked with pkg_propagator svn add
and are ready for commit.

It is perfectly possible to make manual changes at this point. The directories are regular subversion working copies. This can be very handy, for example to
manually fix the problems reported in step 1.

Step 4: Commit new packages

Commit changes by executing the commit bash script:

$./commit "New diffimg 8.0.28 package version with python updated to 2.7.7."

Further Options

Further command line options available for the pkg_propagator:

Parameter

--workdir Allows you to specify a working directory where the old package versions are checked out from SVN and new package versions will be
created. Defaults to the current directory.

--operational Once set new 'operational' package versions are proposed (without 'E' appended to the package version).

--webservice URL to the webservice from where the information on new package versions can be obtained. Defaults to http://desbuild2.cosmology.
 . Note that this service can be called directly from a web browser. By entering a URL of the illinois.edu/eeups/webservice/propagator

form

<webservice>/E/<replace>/<by>/<reference>

or

<webservice>/O/<replace>/<by>/<reference>

for 'experimental' or 'operational' package versions, respectively. In the angular brackets <replace>, <by>, <reference> you need to
specify package versions such as python-2.7.6+1. As a result, you will see a json file with all the old ('orig') packages and the
corresponding new ('prop') packages to be created.

Example:

http://desbuild2.cosmology.illinois.edu/eeups/webservice/propagator/E/atlas_netlib-3.8.4+6
/atlas_netlib-3.8.4+7/eeups-1.4.3+2

As usual, use

$ pkg_propagator --help

to get help on the command line.

User Scenarios

Create New Experimental Package Version (with dependency update)

Follow the steps described above without setting the --operational parameter. With the above example:

$ pkg_propagator --replace python-2.7.6+1 --by python-2.7.7+0 --reference diffimg-8.0.28+2

This would, as described above, create the packages diffimg-8.0.28+3E, coreUtils-0.5.2+5E, psycopg2-2.4.6+5E, cxOracle-5.1.2+9E.

The package diffimg-8.0.28+3E would then be the package to test and play around with.

Create Operational Package Version associated with the Experimental Package Version

Possibly, once all the tests have successfully been concluded, you would like to create an operational version from that. Currently, the suggested way to
do that is to again run the package propagator by using exactly the same parameters as above - but by setting an additional --operational flag:

$ pkg_propagator --replace python-2.7.6+1 --by python-2.7.7+0 --reference diffimg-8.0.28+2 --operational

This would propose to create new packages diffimg-8.0.28+4, coreUtils-0.5.2+6, psycopg2-2.4.6+6, cxOracle-5.1.2+10 - as long as no other package
versions have been added for the given product versions (diffimg-8.0.28, coreUtils-0.5.2, psycopg2-2.4.6, cxOracle-5.1.2) in the meantime.

In the future, we may simplify that - e.g. by a command of the form

pkg_propagator diffimg-8.0.28+3E --operational

which would actually create new package versions diffimg-8.0.28+3, coreUtils-0.5.2+5, psycopg2-2.4.6+5, cxOracle-5.1.2+9 (obtained from the
experimental versions by removing the 'E'). in any case, the experimental version will remain in the system.

Known Issues

Currently, only one single dependency can be replaced at the time. Work in progress to replace multiple packages at the same time.

http://desbuild2.cosmology.illinois.edu/eeups/webservice/propagator
http://desbuild2.cosmology.illinois.edu/eeups/webservice/propagator

No transaction handling: The propagator interacts with both, the continuous integration build system (for fetching the information which packages
to create) and SVN for the checkout and the commit. The continuous build system needs some time to update its state for SVN changes (at the
order of 30-60 secs) so that SVN and continuous integration build system are not guaranteed to always by concurrent. As a result, users may
experience problems when submitting proposed changes - e.g. when two users want to do the same thing at the same time.

Bulk Propagator

Since the tool can easily create hundreds of packages, it is important to understand how the tool works before it is applied.

The tool operates in several steps:

Step 1: Tell eeups_propagate what to do

First the eeups_propagator analyzes the dependency graph and the arguments given to it, and decides which new packages should be created and what
changes should be made their dependencies.

The following always holds:

No existing packages are changed in any way.
For each product-productversion at most one new + version is introduced, even if several changes have to be applied to it.
Newly introduced + versions are a copy of the previous + version.
The only changes made are to the entries in the table file.setupRequired(..)
No new dependencies are added, nor are dependencies removed. They may be replaced by different versions.

Step 1.1: Most-recent dependencies only

The updates the dependencies of every most-recent + version that has a dependency to a not-most-recent + version. This happens eeups_propagator
if no options are given to :eeups_propagator

$ eeups_propagator

For example, say the following packages exist:

python-2.7.3+0
python-2.7.3+1
python-2.7.3+2
pyfits-3.0.7+0 depends on python 2.7.3+0
pyfits-3.0.8+0 depends on python 2.7.3+0
pyfits-3.0.8+1 depends on python 2.7.3+1

Then two new packages would have to be created:

pyfits-3.0.7+1 depends on python-2.7.3+2
pyfits-3.0.8+2 depends on python-2.7.3+2

eeups_propagator performs those changes as there is little point in having most-recent packages depend on packages with out-dated build and always
table files.

Such changes propagate through the dependency graph. If there is a package that depends on a new version of it would be created as pyfits-3.0.8+1
well, pointing to and so on.pyfits-3.0.8+2

Step 1.2: Replace a product version

Using the option, can also be used if a newly released package has not just changed its --replace oldpackage newpackage eeups_propagator
package version, but also the product version (the part before the +).

For example, say a problem with perl 5.10.1 forces us to switch to perl 5.18.1. A package is created that should replace the old perl-5.18.1+0 perl-
 which is currently used by countless other packages. By default will not do anything here if is the most 5.10.1+1 eeups_propagator perl-5.10.1+1

recent + version of perl.5.10.1. In this scenario we can apply the option:--replace

$ eeups_propagator --replace perl-5.10.1+1 perl-5.18.1+0

Now will 'replace' all dependencies to with dependencies to , meaning that it will create a new + eeups_propagator perl-5.10.1+1 perl-5.18.1+0
version for any package that depends on the old perl package.

Of course the change is propagated upwards through the dependency graph.

Step 2: Plan the changes and verify consistency

Once is invoked, it uses the information given to it to assemble a list of all the packages to be created. It runs the same verification eeups_propagator
routines on them (locally), that would be run on the server if the packages would be created on the eups repository at this stage. This detects if the
changes introduce cyclic dependencies or version conflicts of any kind.

If a problem is encountered, the list of all planned changes is printed out, together with a list of the problems found, and the user is asked if he would like to
continue anyway.

if the option is given, the user is asked for permission to continue even if no problems were found.--askfirst

Step 3: Checking out and applying changes

eeups_propagator will now internally run a for each affected product. The working copies are created in the local directory, unless svn checkout
specified differently with . It checks out the URL of the product specified in the file, that is, it checks out the directory tree under which --work eups.cfg
the build and table files are stored.

The script then applies the changes as planned. It internally uses to create new packages and then modifies the table file as required.svn copy

The changes are commited automatically!not

Step 4: Manually check/modifiy the changes

After the checkout has completed and the changes have been applied to the working copies, the tool exits. It does not commit the eeups_propagator
changes directly.

The user can now look at the modified working copies and inspect the work done by . All changes are already marked with eeups_propagator svn add
and are ready for commit.

It is perfectly possible to make manual changes at this point. The directories are regular subversion working copies. This can be very handy, for example to
manually fix the problems reported in step 2.

Step 5: Commit

Once sufficiently convinced that the changes are fine, they can be commited.

Since there might be a rather large number of working copies that need submitting, eeups_propagator has already prepared a bash script for this.

The script is called and is located in the same directory as the checked out working copies. Invoke it with the commit message as argument:commit

$./commit "Replaced perl-5.10.1+1 with perl-5.18.1+0 in all most recent \+ versions."

The new packages should appear in the eups repository and web pages after the usual delays.

Remember: If something goes very wrong, the changes can always be undone thanks to subversions versioning. See (scroll down to "Undoing Red Book
Changes").

User's Guide
For an abridged version (but not a replacement) of this guide see , which contains specific information The Impatient's Guide to DESDM EUPS installation
about installing on OSX (10.7-10.11).

This is the user manual for DESDM's new package management system. It targets both package authors and users that would like to use this package
manager to install software on their systems.

This package management system should run on any Linux machine. Due to the differences of the various Linux distributions (and versions of them) we
cannot guarantee that all the packages will build without errors on every possible machine. We do however automatically test all packages on a set of test
machines running CentOS. In the future additional test systems will be provided.

The DESDM package management system is based on EUPS 1.2.30. EUPS was not modified for DESDM, instead some additional scripts were written to
support some of the use-cases.

1 Nomenclature
2 Installing EUPS

2.1 Prerequisites
2.1.1 Intel Compiler and Math Kernel Library

2.2 Downloading and running the installation script
2.3 Setup Subversion (SVN) access

2.3.1 Subversion (SVN) access problems
2.4 See if eups works

3 Installing Software with EUPS
3.1 How to find the name and version of the software I'd like to install

3.1.1 The 'classical' way

http://svnbook.red-bean.com/en/1.0/ch04s04.html
https://opensource.ncsa.illinois.edu/confluence/display/DESDM/The+Impatient%27s+Guide+to+DESDM+EUPS+installation

3.1.2 The DESDM way
3.2 Installing by name and version
3.3 Installing by name and pipeline
3.4 Installing a complete pipeline
3.5 Setting up by name and version
3.6 Setting up by name and pipeline
3.7 Setting up a complete pipeline
3.8 List all installed / set-up packages
3.9 What to do if things go wrong?
3.10 Some remarks for those with EUPS experience

4 Creating new packages
4.1 Versioning schema

4.1.1 Product Name
4.1.2 Configset Name
4.1.3 Product Version
4.1.4 Package Version

4.2 Version comparison
4.3 Build script

4.3.1 Rules for build scripts
4.4 Table file

4.4.1 Rules for table files
4.5 Testing a package locally
4.6 Subversion directory layout
4.7 Internal and external Products
4.8 Register a new product
4.9 Package testing on dedicated test machines

5 Trunk Packages
5.1 Installing Trunk Packages
5.2 Updating Trunk Packages
5.3 Creating Trunk Packages
5.4 Depending on Trunk Packages
5.5 Continuous build and test

6 Creating Meta-Products
6.1 Versioning Schema

6.1.1 Product Name
6.1.2 Configset Name
6.1.3 Product Version
6.1.4 Package Version

6.2 Marking a product as 'meta'
6.3 Some remarks for those with EUPS experience

7 Package Life Cycle Qualifiers
7.1 Declaration of Life Cycle Qualifiers
7.2 Validation Checks
7.3 Life Cycle Qualifiers as EUPS Tags
7.4 EEUPS Dashboard Views

8 EUPS User Utilities
8.1 Dependency Updater

8.1.1 Running The Dependency Updater
8.1.2 Further Options
8.1.3 User Scenarios
8.1.4 Known Issues

8.2 Bulk Propagator
9 Nomenclature
10 Installing EUPS

10.1 Prerequisites
10.1.1 Intel Compiler and Math Kernel Library

10.2 Downloading and running the installation script
10.3 Setup Subversion (SVN) access

10.3.1 Subversion (SVN) access problems
10.4 See if eups works

11 Installing Software with EUPS
11.1 How to find the name and version of the software I'd like to install

11.1.1 The 'classical' way
11.1.2 The DESDM way

11.2 Installing by name and version
11.3 Installing by name and pipeline
11.4 Installing a complete pipeline
11.5 Setting up by name and version
11.6 Setting up by name and pipeline
11.7 Setting up a complete pipeline
11.8 List all installed / set-up packages
11.9 What to do if things go wrong?
11.10 Some remarks for those with EUPS experience

12 Creating new packages
12.1 Versioning schema

12.1.1 Product Name
12.1.2 Configset Name
12.1.3 Product Version
12.1.4 Package Version

1.

2.
3.

12.2 Version comparison
12.3 Build script

12.3.1 Rules for build scripts
12.4 Table file

12.4.1 Rules for table files
12.5 Testing a package locally
12.6 Subversion directory layout
12.7 Internal and external Products
12.8 Register a new product
12.9 Package testing on dedicated test machines

13 Trunk Packages
13.1 Installing Trunk Packages
13.2 Updating Trunk Packages
13.3 Creating Trunk Packages
13.4 Depending on Trunk Packages
13.5 Continuous build and test

14 Creating Meta-Products
14.1 Versioning Schema

14.1.1 Product Name
14.1.2 Configset Name
14.1.3 Product Version
14.1.4 Package Version

14.2 Marking a product as 'meta'
14.3 Some remarks for those with EUPS experience

15 Package Life Cycle Qualifiers
15.1 Declaration of Life Cycle Qualifiers
15.2 Validation Checks
15.3 Life Cycle Qualifiers as EUPS Tags
15.4 EEUPS Dashboard Views

16 EUPS User Utilities
16.1 Dependency Updater

16.1.1 Running The Dependency Updater
16.1.2 Further Options
16.1.3 User Scenarios
16.1.4 Known Issues

16.2 Bulk Propagator

Nomenclature

Term Description

Product A product is a name for a software component. Typical products are 'cfitsio', 'atlas', 'sextractor' and so on.

Package A package is specific version of a product, compiled in a specific way, possibly linking to a specific set of libraries (other
packages).
Are are typically several packages for the same product.

Installing EUPS

Before any packages can be installed, EUPS must be installed. It its highly recommended to use our install script to do this, as it sets some additional
environment variables which will be assumed to be present while working with the package manager. We do not support alternative installation methods.

The installation is a three-step procedure.

Make sure that the system has the prerequisites. This typically involves installing software that, for various reasons, are not managed as
packages.
Download the install script.
Run the install script. The script will interactively ask for the installation path and such.

Each step is described in more detail below.

Prerequisites

If we would track every last bit of software in the package manager, we would effectively build our own Linux distribution. Instead we assume that a Linux
distribution is already in place. This also allows everyone to use our package manager on their already set-up systems. Drawing a clear line between
software maintained in our package system and software we assume to be present is not possible. Some guidelines are described in the package author
section.

It turns out to be quite hard to provide an accurate list of prerequisites (for example: How to reliably detect the minimum version of libc needed by
sextractor?). The following list is updated with the current state of our knowledge.

Dependency Used by RHEL / centOS package (if known) OSX

python (some old version will do) Package management system itself python -

wget Package management system itself wget wget ()install wget from source

curl Package management system itself curl curl (install instructions soon)

unzip oracleclient 11.1.0.7 unzip -

zlib libpng 1.2.38, python 2.7.3 zlib zlib-devel zlib

bzip2 python 2.7.3 bzip2 bzip2-devel bzip2

libfreetype plplot 5.8.0 freetype freetype-devel freetype ()install freetype from source

libX11 plplot 5.9.9 libX11 libX11-devel

libXau plplot 5.9.9 libXau libXau-devel

libxcb plplot 5.9.9

libXext plplot 5.9.9 libXext libXext-devel

libxpm root 5.26.00 libXpm libXpm-devel

libXft root 5.26.00 libXft libXft-devel

libcrypt python 2.7.3 openssl openssl-devel glibc-devel

libaio oracleclient 11.1.0.7 libaio libaio-devel

libfreebl3 python 2.7.3 nss-softokn-freebl nss-softokn-freebl-devel

libnsl python 2.7.3 glibc-devel

gcc various packages gcc gcc-c++ make autoconf patch Apple Xcode 5.1.1 ()dmg

gfortran atlas 3.8.4, netlib-lapack 3.4.1 gcc-gfortran version >= 4.8.2 ()gfortran dmg

pkg-config glib 2.29.2 pkgconfig install from source instructions

subversion Package management system itself svn (subversion on rhel5) -

rsync unitRunning 0.0.11 rsync rsync

tar desdm_eupsinstall.py tar

We optionally support Intel's ICC and MKL (see the next section)

Intel Compiler and Math Kernel Library

Some users are interested in using the compiler from Intel and Intel's math library. But since not everyone has access to those commercial products they
are optional. If they are to be used, they need to be installed manually in advance. We cannot distribute ICC and MKL via EUPS for licensing reasons.

The following table lists the minimum versions required. Note that gcc and gfortran are still required since not all packages might support ICC and MKL
(earlier versions of sextractor for example).

Dependency Used by

icc (>=11.1) sextractor (icc&mkl build only)

mkl (>=10.3) sextractor (icc&mkl build only)

ICC and MKL can only be used in combination.

Downloading and running the installation script

The latest version of the installation script is available here: .http://desbuild2.cosmology.illinois.edu/desdm_eupsinstall.py

You can download it with wget (wget is a prerequisite, so you should have it installed by now).

 $ wget http://desbuild2.cosmology.illinois.edu/desdm_eupsinstall.py

After that, run it with python:

$ python desdm_eupsinstall.py

and follow the instructions.

It will ask for two installation paths. One for EUPS itself and one for the software installed via EUPS packages. It will also ask if ICC and MKL should be
used (which leads to a set of additional questions). The script can also modify the login-scripts to setup EUPS every time you log in. After confirming the
settings the script will download and install EUPS.

https://opensource.ncsa.illinois.edu/confluence/display/DESDM/Installing+wget+from+source
https://opensource.ncsa.illinois.edu/confluence/pages/viewpage.action?pageId=61604031
https://developer.apple.com/devcenter/download.action?path=/Developer_Tools/xcode_5.1.1/xcode_5.1.1.dmg
https://gcc.gnu.org/wiki/GFortranBinaries
https://opensource.ncsa.illinois.edu/confluence/display/DESDM/Installing+pkg-config+from+source+for+OSX
http://desbuild2.cosmology.illinois.edu/desdm_eupsinstall.py

During the installation procedure a bash and a c-shell script are generated which setup the environment variables required to use EUPS. The installation
script output tells you where the files are and how to 'source' them.

The script performs some rather primitive checks on the prerequisite. There is no guarantee that all prerequisites are in place just because the script
completes. It is just a help to detect some common issues.

Setup Subversion (SVN) access

The source code of some packages is directly fetched from subversion upon installation of the package. This requires read access to the subversion
repository on . Further more subversion must be configured in a way that allows access to this https://dessvn.cosmology.illinois.edu/svn/desdm/devel/
repository without interactively asking for the user's password. Otherwise the package installation will block for ever as EUPS does not support interaction
with the user during a package installation.

The simplest way to set this up is to run the following command:

$ svn info $SVNROOT

If it just runs though and prints out some information about the current state of the repository then everything is setup correctly. If not, it will ask the user for
input. Typically two questions appear:

Error validating server certificate.... (R)eject, accept (t)emporarily or accept (p)ermanently? Enter 'p' to ensure that the question won't
reappear.
Username & Password: SVN asks first for the password, using the wrong username. Just press enter. It will then ask for the username and for the
password. Agree to store the password.

Subversion (SVN) access problems

If you forgot your password, it might be stored as plain text in your home directory space under:

$HOME/.subversion/auth/svn.simple/

If you still have problems accessing SVN you can get help here :filling out this form

See if eups works

As a quick check to see if EUPS was properly installed and the environment is set-up correctly you can try

$ eups --version
EUPS Version: 1.2.30

also running the following command shows you all packages currently available:

$ eups distrib list

Check that the subversion repository can be accessed without interaction:

$ svn info $SVNROOT

This will print some information about the current state of the repository which isn't very interesting at this point. The idea is to check that this works without
asking for any kind of input such as a password.

Installing Software with EUPS

Once EUPS is installed, installing packages should fairly easy. You tell EUPS the name of the product you'd like and which version and EUPS installs that
piece of software. EUPS also recursively installs all dependencies in the proper order. After the product is installed it needs to be activated before it can be
used. We call this 'setup'.

How to find the name and version of the software I'd like to install

The 'classical' way

Run this command:

$ eups distrib list

https://dessvn.cosmology.illinois.edu/svn/desdm/devel/
http://desdm.wufoo.com/forms/help-me-with-my-desdm-account/

It lists all packages currently available in the package repository. While this works, it is often not that helpful to find the right package as there will be
several versions of each product.

The DESDM way

As part of our continuous integration efforts web pages are generated automatically to reflect the current state of the package repository. They can be
found here (might be worth a bookmark):

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/products

On the left side is a list of all products. The matrix on the front page shows which versions of each product is used in a particular pipeline version. Clicking
on a product name lists all the versions available of that product. Colors indicate if the automated build tests have found a problem with a particular
package.

Installing by name and version

Once the name and version of the package is known, installing is just a single command:

$ eups distrib install NAME VERSION

for example to install version 2.17.0+0 of runsextractor

$ eups distrib install sextractor 2.17.0+0

It will automatically trigger the installation of atlas and fftw.

Installing by name and pipeline

There is also a little shortcut. For example if you would like to install the version used by firstcut-stable, you can directly run (pipeline names are sextractor
always in upper-case):

$ eups distrib install sextractor -t FIRSTCUT-stable

EUPS will look up the version number for you, based on the -t argument. EUPS will behave exactly as if the package was installed by explicitly giving the
version number.

Installing a complete pipeline

Instead of installing an individual package it is also possible to install all packages that belong to a certain pipeline with a single command:

$ eups distrib install FIRSTCUT -t FIRSTCUT-stable

This will make sure that all packages which are directly or indirectly used by firstcut-stable are installed.

Setting up by name and version

After installation the software is compiled and installed in its very own directory structure. Before it can be used the environment variables need to be set-
up:

$ setup NAME VERSION

For sextractor this might look like this:

$ setup sextractor 2.17.0+0

This will ensure that the PATH environment variable includes the correct version of sextractor.

Setting up by name and pipeline

The same shortcut used for installing can also be used for setup:

$ setup sextractor -t FIRSTCUT-stable

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/products

A package can also be un-setuped. This helps to keep the environment variables clean.

$ unsetup sextractor

Setting up a complete pipeline

Corresponding to the install commands it is also possible to setup all packages that belong to a certain pipeline:

$ setup FIRSTCUT -t FIRSTCUT-stable

List all installed / set-up packages

To get a list of all packages currently installed on the local system execute:

$ eups list

Those that are currently setup are marked with 'setup'.

What to do if things go wrong?

Should a package fail to install properly, or if the environment gets wrongly setup for a package, please report it! One of the main motivations for this
package management system is to solve each software deployment problem once in the consortium, instead of once per collaborator. If problems are
reported, the package authors will look at it personally and make sure that the same problem will not occur anymore for anybody else.

Please report all issues to .JIRA

The JIRA is setup with several projects and components to which tickets can be added. The important thing is to have a ticket, we will move it should it
land in the wrong component, as it is sometimes not clear where a problem fits.

We have a continuous integration system in place that automatically performs build-tests on a set of test machines. If you encounter problems building the
packages on your machines it might make sense to dedicate a representative machine for continuous integration. That way the package authors get
automatic feedback should a package fail on your machines.

The eups distrib install command hides the output of the build script, only printing the last few lines of the output in case of a failure. This makes it hard to
track down the cause. The complete output is stored a log file in the directory:

 $EUPS_PATH/EupsBuildDir/Linux64/[PRODUCT]/[VERSION]/[PRODUCT].log

This this directory is deleted if the install was successful, so the log file only exists on failure.

TODO: how to open a JIRA ticket for this

Some remarks for those with EUPS experience

The '-t' option used above stands for 'tag', a EUPS feature we use in a very specific way in DESDM. Special meta-products, typically named after
pipelines, automatically create a tag for each package they, directly or indirectly, depend on. This allows the above use-cases where a pipeline name is
used instead of a specific version number. Installing the meta-product itself installs the hole pipeline. In this case too it makes sense to use the '-t' trick to
specify the version.

Creating new packages

The package generation procedure applied in DESDM is quite different from the one used on stock EUPS. For one thing you don't need any EUPS
commands at all. The process is tightly integrated with our continuous build system.

Every package on our repository server is defined in subversion. The repository is server automatically synchronized with subversion. Thous to create a
package in our repository, you need to make the right changes in subversion. You may use any subversion tools and methods you like to do this.

The package authors has to provide:

The name of the product
The version number of the package
The build script
The table file

The build script contains the instructions of how to build and install the package. The table file lists the dependencies and contains instructions to setup the
environment variables for the software to work.

http://dessvc.cosmology.illinois.edu:8080/secure/Dashboard.jspa

Versioning schema

The full identity of a package consists of the name and the version. The version is further divided in the product version and the package version.
Optionally a configset name can be specified. The product version tracks changes in the code, where as the package version tracks changes in the build
and table files. The configset is used if the same software is build in different variants (for example with different parameters passed to)../configure

The full identity of a package is given by:

PRODUCTNAME PRODUCTVERSION+PACKAGEVERSION

in the usual case where no configset is required. If there is a configset it is appended to the product name with an underscore.

PRODUCTNAME_CONFIGSET PRODUCTVERSION+PACKAGEVERSION

Lets look at a few examples:

Product Name Configset Product Version Package Version

cfitsio 3.300+0 cfitsio 3.300 0

libjpeg 6b+1 libjpeg 6b 1

altas_netlib 3.8.4+2 atlas netlib 3.8.4 2

Product Name

The product name is an non-empty string that may contain the following characters:

a-z, A-Z
0-9

No spaces, slashes, (under)scores, or any other special characters are permitted.

The package name should be all-lowercase. Camel-case can be used if required for readability.

Configset Name

Most packages won't have a configset name. The configset is used if the same software needs to be compiled in several variations. This is rarely needed.
If possible one should try to create a single package that works for all the usecases.

configset names follow the name naming convention as the product name.

Product Version

A difference in the package version indicates a change in the source code.

The package version must be of the form . All the components are optional. Each component may contain the PrefixAAA.BBB.CCC-LLL.MMM.NNN
following characters:

a-z, A-Z
0-9

The product version has a special meaning (see below) and should not be used for product releases.trunk

The product version is typically selected by the developers of the software. For third-party libraries it is strongly recommended to use the version under
which the software was released without any changes as the product version.

Package Version

If two packages only differ in the package version, the source code is the same, but either the build or the table files is different. The most common
reasons to increase the package version are:

Bug fixes in the build file or table file.
Changes of the dependencies listed in the table file. Especially common is the case where one of the dependencies is replaced to a newer
version of the same product.

At the moment the package version is a single integer which must increased at every change of the build or table file. Whenever the product version
changes, the package version must be reset to zero.

Version comparison

Versions of the same product have to be compared in order to keep track of the latest one. Comparison is limited to versions of the same package. The
sorting rules are as follows:

1.

2.
3.

1.
2.
3.
4.

The elements are split on (or) and compared as integers or alphabets. In case if two elements are not same (for example '2a' and . _, +, -
'ab'), then the integer is given the preference over the alphabet otherwise each element(string on numbers) is compared with the other when
same (in 'ab' and 'a2', 'ab' with 'a' and ''(nothing) with '2').
Alpha and beta versions are considered as earlier versions (3.14.0a < 3.14.0b < 3.14.0)
If the two product versions are equal then the packageversion decides the earlier version (3.14.0+1 < 3.14.0+2)

Build script

For DESDM we use EUPS in a rather simplistic way. Each package is build and installed by execution of a bash script written by the author. It contains the
instructions to build the software from its source and install it. You can do about everything in that bash script. Typically the script will roughly perform the
following steps:

Fetch the source code from somewhere
./configure
make
make install

Take for example the build script of cftisio 3.300+0:

wget $EXTERNAL/$PRODUCT/$PRODUCT-$VERSION.tar.gz
tar xzf $PRODUCT-$VERSION.tar.gz
cd cfitsio
./configure --prefix=$PRODUCT_DIR
make
make install

The web-reports of the repository show the build script for every package . It http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/products
might be a good idea to peek at similar packages to see how they are doing it.

There are some environment variables that can be assumed to be present in every build script:

Variable Description Example Value
w/o configset

Example Value
w. configset

EXTERNAL URL to the place were the
tarballs
of external dependencies are
stored.

http://desbuild2.cosmology.illinois.edu/eeups/webservice
/resources/

http://desbuild2.cosmology.illinois.edu/eeups/webservice
/resources/

SVNROOT URL to the subversion
repository.

https://dessvn.cosmology.illinois.edu/svn/desdm/devel/ https://dessvn.cosmology.illinois.edu/svn/desdm/devel/

SVN_PATH Relative path to the root
folder of
the source inside the
product's SVN
directory.

tags/3.8.4+0 tags/3.8.4+0

PRODUCT Name of the product. For
historical
reasons the configset is
appended.

atlas atlas_netlib

VERSION Version of the product. 3.8.4 3.8.4

PKG_VERSION '+' part of the package version. 1 1

FULL_VERSION The complete package
version

3.8.4+1 3.8.4+1

FLAVOR The flavor of the system
where the
package is installed.

Linux64 Linux64

PRODUCT_DIR The base directory into which
the
package must be installed.

[...]/Linux64/altas/3.8.4+1 [...]/Linux64/altas_netlib/3.8.4+1

[DEPENDENCY]
_DIR
(for example
 CFITSIO_DIR)

For every package this
package
depends on, there is at least
this
environment variable. It
points
to the directory that was the
PRODUCT_DIR of that
package.

[...]/Linux64/cfitsio/3.300+0 [...]/Linux64/cfitsio/3.300+0

If your package as dependencies (listed in the table file, see below), then all those packages will be installed and set-up before the script is executed. You
can assume that all environment variables set by the table files of the dependencies are available.

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/products
http://desbuild2.cosmology.illinois.edu/eeups/webservice/resources/
http://desbuild2.cosmology.illinois.edu/eeups/webservice/resources/
http://desbuild2.cosmology.illinois.edu/eeups/webservice/resources/
http://desbuild2.cosmology.illinois.edu/eeups/webservice/resources/
https://dessvn.cosmology.illinois.edu/svn/desdm/devel/
https://dessvn.cosmology.illinois.edu/svn/desdm/devel/

You can also assume that all tools and libraries listed as prerequisites in the install chapter of this manual are present. You may also use tools that are
available on every Linux distribution, such as tar.

Rules for build scripts

You may use the current directory to store temporary files. For example to unpack and build the source. The directory will be deleted after the
installation.
Install into $PRODUCT_DIR. The directory is created before the build script is executed.
Do NOT make ANY modifications outside either the current directory or the directory pointed to by $PRODUCT_DIR what so ever!.

Table file

The table files serves two purposes: It lists the dependencies of the package and it contains the instructions to setup the environment before the software
in the package is used.

Note that even if the table file looks a bit like a bash script on first sight, they are not. Regular bash commands will not work.

Command Description Examples

setupRequired Declares a dependency.
Only direct dependencies need to
be listed. EUPS will traverse
them recursively.

setupRequired(libpng 1.2.38+0)
setupRequired(libjpeg 6b+0)

envPrepend Adds a path in front of an environment
variable. If the variable is not yet set
it is set to the given path.

envPrepend(PATH, ${PRODUCT_DIR}/bin)

envAppend Adds a path to the end of an
environment
variable. If the variable is not yet set
it is set to the given path.

endAppend(LD_LIBRARY_PATH, ${PRODUCT_DIR}/lib))

Rules for table files

DO NOT USE version ranges. EUPS has some support to specify version ranges with setupRequirement. DESDM does not support this. Always
specify the exact version. This ensures that we build packages exactly the same way everywhere, making installations reproducible.
Always use curly brackets around variables. EUPS will not work without them.
Use envPrepend instead of envAppend. This is important as it ensures that we really ending up using the software in the package and not some
other installation that happens to be installed on the machine.

Testing a package locally

Before adding the package to subversion (and thereby to the package repository server) it is often advantageous to test the package first on the local
machine. We provide a tool that creates and installs a package locally using the same methods used to create the packages in the repository.

The tool is available on the package repository itself. Thous, before it can be used it needs to be installed (once only) and set-up:

$ eups distrib install eeups -t EEUPS-stable
$ setup eeups -t EEUPS-stable

The tool is most simple to use if both the build and table file are in the same directory and are named PRODUCTNAME.build and PRODUCTNAME.table.
This is typically the case when preparing a package following the subversion directory layout described below.

From the directory containing the build and table file run

$ eeups_build PRODUCTNAME

This creates, builds and installs the package locally. The version will be 'dev+0' to indicate that this package was not installed from the eups repository
server.

The command has essentially the same effect as to commit the package to subversion, wait for it to appear on the package repository server and then
execute 'eups distrib install PRODUCTNAME dev+0'. Only that neither subversion nor the package repository is changed in anyway (nothing is leaving the
machine). Also it is not possible to add packages with 'dev' as their package version to the eups repository server.

The tool has some other options for example to install the package in a separate place instead of the default location. You may also specify other locations
of the build and table files. Use

$ eeups_build --help

To get a documentation of all options.

The eeups_build command hides the output of the build script, only printing the last few lines of the output in case of a failure. This makes it hard to track
down the cause. The complete output is stored a log file in the directory:

$EUPS_PATH/EupsBuildDir/Linux64/[PRODUCT]/[VERSION]/[PRODUCT].log

This this directory is deleted if the install was successful, so the log file only exists on failure.

Subversion directory layout

All packages in the package repository originate from subversion. Thous the proper way to modify the package repository is to modify the subversion
repository. The package repository will be updated to reflect any changes in subversion. It is important to stick to this layout to ensure that the packages
can be located by the synchronization scripts.

The required layout builds on top of the usual trunk/tags/branches layout commonly applied in subversion. The same layout is used for products where the
source code is maintained in the subversion repository and for third-party products where the source code is stored outside. In the first case the code will
be stored in parallel to the build & table file. In the second the build and table files will be the only files in the directory structure.

For each product a directory must exist in subversion. It should, but must not, be named like the product (for example 'cfitsio'). The location of the
directory is not important. It has to be stored in the configuration file (see below).
Inside this product directory a sub-directory called 'tags' is expected.
Inside 'tags' packages will be created for every sub-directory with a name that follows the PRODUCTVERSION+PACKAGEVERSION schema
described in an earlier section.
Within the tag the build and table files are expected. They have to be named as follows:

PRODUCTNAME.build and PRODUCTNAME.table for packages without a configset.
PRODUCTNAME_CONFIGSET.build and PRODUCTNAME_CONFIGSET.table for packages with a configset

In the special case of trunk-packages (see below) the trunk directory is also scanned and a package will be created if a build and table file are
present.

Example for cfitsio

.../cfitsio/
 tags/
 3.280+0/
 cfitsio.build
 cfitsio.table
 3.300+0/
 cfitsio.build
 cfitsio.table
 3.300+1/
 cfitsio.build
 cfitsio.table

This would create three packages with versions 3.280+0, 3.300+0 and 3.300+1.

Example for atlas

.../atlas/
 tags/
 3.8.4+0/
 atlas.build
 atlas.table
 atlas_netlib.build
 atlas_netlib.table
 3.8.4+1/
 atlas.build
 atlas.table
 atlas_netlib.build
 atlas_netlib.table

This would create four packages, two without a configset and two with configset 'netlib'. The versions would be 3.8.4+0 and 3.8.4+1.

The layout is chosen such that one can simply keep the build and table file in the base directory of the source code (directly in trunk). They will end up in
the right place once the trunk is tagged. One must follow the usual rule not to make changes into an existing tag. Instead make a new tag (typically with an
incremented package version).

The location of this directory tree inside the subversion repository is not important. As a convention, all products where the build & table files are not
maintained in the same directory tree as the source-code are located under . https://dessvn.cosmology.illinois.edu/svn/desdm/devel/eupsScripts/external
Those are mostly third-party products and internal products where we'd like to keep code and build/table separated (at least for a while).

https://dessvn.cosmology.illinois.edu/svn/desdm/devel/eupsScripts/external/eups.cfg

1.
2.
3.

Internal and external Products

The above structure containing the build and table files can either be stored separtely from the source or it can be the same structure in which the source
code is maintained. The later implies that the development team uses the desdm subversion repository to manage the source-code. Obviously this is not
the case for all products which are not developed within the consortium, such as cfitsio. We call those external products. They still have their directory tree
within the desdm repository, but it will only contain the build and table files.

If the build and table files are stored in the same directory tree as the source code, we call them internal products. Internal products have the advantage
that the maintainance of the build and table file becomes a natural part of the software development. Developers are encuraged to keep an up-to-date
version of the build and table file in the trunk directory, changing it along with the source code if necessary. This package management system will ignore
those files within the trunk since it only looks for tags. The advantage of keeping them in the trunk directory is simple: Once the software is ready for
another release, just create a tag in the usual subversion way, that is by copying the trunk into a tag directory. The package management system will
detect that tag, and the build and table files within, and create a new package. This is quite handy for the develpers as they don't have to do any additional
effort to create a package beyond creating the subversion tag that they have to create anyway.

There are a few special applications of the above. Some products are treated like external ones, even though their source code is managed in the same
subversion repository. In other words such products have two directory trees: one storing the source code and one storing the build and table files. This
creates a clear separation of source-code and package management. We apply this in cases where the development team does manage the build and
table files them selves. As long as the new package management system is still in development, we do this for all packages. The goal is to migrate those
into 'internal' products, with just one directory tree, as soon as the new system is ready and the development team were instructed.

Another, very rare, case are packages that are not developed in the consortium, but that have the source (or binaries, if the authors don't provide the
source code) in our subversion repository anyway. The package maintainer needs to fetch the code from the authors and check it in. Typically the tarball it
self is stored in subversion directly. The motivation is that the usual way, uploading the tarball to our webserver, has the draw back that the webserver is
publically accessible, where as our subversion repository is protected. We only do this for products where the licence does not allow public redistribution.

Register a new product

Each product needs to be registered in the configuration file. It points the scripts to the directories where it will start scanning the directory layout described
above for packages.

The configuration file is stored inside subversion it self: https://dessvn.cosmology.illinois.edu/svn/desdm/devel/eupsScripts/external/eups.cfg

In the [products] section, add a line for the new product. It must have three parts separated by one or more white-spaces:

Name of the product
Product directory in subversion. This is the path that points to the directory layout described above.
An email address of a person that can be contacted if there is a problem with the packages from this product.

There are many products already declared which can be used as a reference.

Package testing on dedicated test machines

In DESDM we apply continuous build. Each package on the package repository is automatically build on a set of test machines. Those test machines are
selected to represent the various environments where the software needs to run. This gives the developers / package maintainers an early feedback
should the package fail to build on a certain hardware type or linux distribution. We are currently building up the set of test machines used for this.

The results of the continuous build are displayed here:

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/

The current version of the webreport has a small bug: Packages will always be marked OK (green) during the time after creation and before the build
servers have completed their build-test (the package status is OK during that time because no error has been reported). Once the build results come in,
the status might change to ERROR (red). Always check the details of the package to see if all builds have already completed.

Remember not to change an existing EUPS tag when fixing bugs reported in the build tests. Always create a new package. It is perfectly OK to have old
packages fail in a product. Most products have, or will eventually have, such obsolete, failing packages. The webreports show the packages with the
highest package versions (the number after the '+').

Trunk Packages

In general the package management system follows the principle that a package is never changed once created. Trunk-packages are the exception to this
rule.

A trunk package is a package for the code that is currently in the directory of that product's subversion tree. The package is named as follows:trunk

Product name: imsupport
Product version: trunk
Package version: +0

Since the trunk code is volatile, so is the package. The is never incremented!+0

Installing Trunk Packages

https://dessvn.cosmology.illinois.edu/svn/desdm/devel/eupsScripts/external/eups.cfg
http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/

Trunk packages are installed the same way as all other packages:

eups distrib install imsupport trunk+0

The difference is that the current source code from the trunk svn-directory (instead of an svn-tag) is exported, built and installed (Note: the package author
has to make this true in his build script). This implies that the time when the command is executed matters. If a trunk package is installed eups distrib
on two machines on two different days, they will very likely build with different source code.

Updating Trunk Packages

With regular packages there is no update routine required, as they never change. One just installs the newer version of the product. Since trunk packages
are changing, one might have the need to update it.

We are currently planning a tool for this. But for the moment the following procedure can be used:

eups undeclare imsupport trunk+0
eups distrib install imsupport trunk+0

This causes a re-install of the package (which will use the current code from subversion). Note that this procedure does not handle dependencies. One
has to manually decide which depending packages need rebuilding as well. In the case of one might need to apply the same procedure to imsupport imd

 afterwards as well.etrend

Creating Trunk Packages

Trunk packages are equal to regular packages in almost all aspects. A configuration file must be placed in the product's subversion directory eups.cfg
and the flag must be set:trunk_package

.../imsupport/
 eups.cfg
 tags/
 ...
 trunk/
 imsupport.table
 imsupport.build

The content of the eups.cfg must contain:

[product]
trunk_package=True

Natrually the build script of a trunk package must export the source from the trunk. It might be helpful to use the SVN_PATH
environment variable which is available in all build scripts.

svn export $SVNROOT/imsupport/$SVN_PATH imsupport
cd imsupport
./configure
make
make install

$SVN_PATH is set to for trunk packages and set to for regular packages. This way the build scripttrunk tags/$FULL_VERSION
does not need to be changed when copying the trunk to a tag directory when releasing the software.

it is highly recommended to have the source code in the same trunk directory as the build and table files. Our continuous integration
scripts can only detect a change to a package if the change happens in the directory where the build and table files are stored. This is called an 'Internal
Product'. See above.

Depending on Trunk Packages

Using packages can depend on each other. Trunk packages can depend on other packages as they wish, but there is one important rule:setupRequired

Non-trunk package must NOT depend on trunk packages. A regular package represents a very specific, unchangable version of a software. This would
no longer be given if somewhere in its dependency tree a package could change. Therefore they must never depend on trunk packages or we break
provenance.

Trunk packages are allowed to depend on other trunk packages as well as regular packages.

Eventually the system will enforce this rule. For the moment this is in the responsibility of the package author.

Continuous build and test

If the source of a trunk package changes, that is, someone makes a commit to the trunk, then this triggers automatically a new build and a new run of the
tests.

If other packages depend on this trunk package, then those are rebuild and retested as well. This results in true continuous integration testing, where the
software is automatically tested not only for itself, but also if it still works together with the other packages.

Build and test reports are listed on the package's build information page in the .Web-Reports

Creating Meta-Products

Meta-Products simplify the selection of packages. On the package repository there is an ever increasing number of products available in an ever
increasing number of versions. Some products might even be available in different configurations. This makes it difficult to find the right version, especially
since several versions of a product might be in use at multiple places simultaneously (production, testing, development, ...).

A meta-product is a regular product with a special use-case and a few special conventions. Which will be explained in this section.

As with regular products, meta-products have packages. Those are called meta-packages. Meta-products typically don't contain any software (but they
could). The main 'content' of a meta-package are its dependencies. The dependencies of a meta-package group together a set of other packages that
form a logical unit. In DESDM we have a meta-product for each pipeline. It groups together (depends on) all the software required to run this pipeline.

Meta-Products serve two main use-cases:

Installation of all packages required to run the complete pipeline.
Installation of a single package out of a pipeline, by specifing the product name and the pipeline name. The exact version of the package is
inferred from the pipeline.

Meta-package typically have an empty build script (but the file still needs to exist) and a comparatively large table file.

All indirect dependencies (packages on which packages in the meta-package's table file depend on) are automatically part of the meta-product.

Versioning Schema

Meta-packages follow the versioning schema of normal packages. However some additional guidelines exist:

Product Name

The name of a meta-product should be all upper-case to discriminate it from normal products which should be lower-case. Typically the name of the meta-
product equals to the name of the pipeline (e.g. 'FIRSTCUT').

Configset Name

Configsets are currently not used for meta-products.

Product Version

The product version should represent the status of the pipeline. It could be a number, but also a descriptive word. For example:

'stable'
'production'
'beta'
'testing'
'development'

It probably makes sense to agree on a common set of product version descriptors for all pipelines. We still need to do this.

Package Version

Incremented integer as with normal packages.

As with regular packages, once a package is created it it never changed. With meta-products, changes typically result from 'promoting' a software package
to a certain version of a pipeline. Iin other words, the dependencies of the meta-product change. As with regular packages, this results in an incremented
package version.

Marking a product as 'meta'

Meta-products follow the exact same layout in subversion. To mark a product as a meta product add a 'eups.cfg' file into the product's root directory in
subversion:

.../FIRSTCUT/
 eups.cfg

http://deslogin.cosmology.illinois.edu/eupsroot/ci/

 tags/
 stable+0/
 cfitsio.build
 cfitsio.table
 stable+1/
 cfitsio.build
 cfitsio.table
 development+100/
 cfitsio.build
 cfitsio.table

The content of the eups.cfg must be:

[product]
meta_product=True

Some remarks for those with EUPS experience

The DESDM system automatically creates a EUPS-tag for each meta-product and product version.For example there might be a tag for 'FIRSTCUT-stable'.

All packages, directly or indirectly, referenced from the meta-package with the highest package version is added to that EUPS-tag. For example the tag
'FIRSTCUT-stable' might correspond to the package 'FIRSTCUT table+5', if there is no other package with a higher package version.

The EUPS-tags are the only component in the package management system which changes over time (they are replaced when a package with a higher
package version is created). This is ultimatively the reason why a user can write for example

eups distrib install FIRSTCUT -t FIRSTCUT-stable

and be sure to get the 'current' versions without explictly knowing them.

Package Life Cycle Qualifiers

Each package is given one of the following 'life cycle' qualifiers:

OPERATIONAL (O)
DEPRECATED (D)
EXPERIMENTAL (E)

Based on these qualifiers, the the continuous integration build system can perform validation checks, can set tags for eups packages distributed through
the distrib server. Furthermore, the webpages can be filtered for specific qualifiers - hence, help navigating in the thousands of packages we now have in
the system.

Declaration of Life Cycle Qualifiers

Default qualifiers:

 • Packages defined in the tags directory (of a given product) are identified as OPERATIONAL.

 • Packages defined in the trunk or branches directory (of the given product) are identified as EXPERIMENTAL.

These defaults can be overruled for packages defined in the tags directory as follows:

 • DEPRECATED packages can explicitly be declared in the eups.cfg file defined at product level.

 • EXPERIMENTAL packages can be declared by appending an 'E' to the package version (e.g. eeups-1.4.3+4E). Note that this is not necessary for
trunk and branch packages.

DEPRECATED packages can be declared in the eups.cfg file by the following syntax:

deprecated = 1.2.3+10; 3.2.1+0; [5.2+3,6.3+2]; [6.5+0,6.6+3); [8.8+1,*), (*,1.2+1]

Actually, for the ranges, a suitable ordering of the versions is adopted (the same ordering that you can see on the per product view in the eeups
dashboard. Angular brackets indicate that boundary versions included, round brackets that boundary versions are excluded.

The * in [8.8+1,*) means that any version above (and including) 8.8+1 is included or, accordingly in (*,1.2+1] that any version below (and including) 1.2+1
is included.

Different versions or ranges of versions specified per qualifier are separated by a semi-colon (;).

Validation Checks

The validation checks will be based on the following rules:

 • a package with qualifier O must not depend on E. Otherwise, the package will receive status=ERROR

 • a package with qualifier O should not depend on D. Otherwise, the package will receive status=WARNING.

The result of these checks will be reflected in the package state and the package states are presented in the EEUPS Dashboard web pages.

Life Cycle Qualifiers as EUPS Tags

Furthermore, the qualifiers are reflected on the EUPS Distribution Server in form of according EUPS tags. It means that by eups distrib list -t
'OPERATIONAL' the operational versions can be listed. A dedicated package distribution service should serve exclusively only OPERATIONAL package
versions to the DES user community.

Not yet implemented.

EEUPS Dashboard Views

The EEUPS Dashboard (see) views can be filtered for these qualifiers http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/
(OPERATIONAL, EXPERIMENTAL, DEPRECATED, ALL). By default, the filter will be set to OPERATIONAL.

Not yet implemented.

EUPS User Utilities

User utilities support users in interacting with the EUPS system. Typical examples are utilities for creating new packages or for propagating version
updates of a give package all the way up through the dependency tree.

All these tools are shipped as part of the eeups product:

$ eups distrib install eeups -t EEUPS-stable
$ setup eeups -t EEUPS-stable

or for a specific version to obtain new features in beta release status:

$ eups distrib install eeups 1.4.3+2
$ setup eeups 1.4.3+2

With the exception of trunk packages (see below), packages never change. If one releaes a new version of product, then all the other products that
depend on it likely need a new + version as well, as one wishes to update its dependency. If a package 'at the bottom' of the dependency graph is
released, many such new packages may have to be created. This is a time consuming and error-prone process to do manually.

Two different versions of package propagation tools exist:

Dependency Updater (pkg_propagator): Used for updating updating a given package for version updates of a direct or indirect dependency.
Bulk Propagator (eeups_propagator): Used for propagating version updates in the bulk of all packages.

The following rules hold true for both propagator tools:

Existing packages are not modified.
For each product-productversion at most one new + version is introduced, even if several changes have to be applied to it.
Newly introduced + versions are copies of the previous + versions. The only changes are applied to the table files (entries setupRequired(..)
) to reflect changes in the dependencies.
No new dependencies are added, nor are dependencies removed. They may be replaced by different versions.

Dependency Updater

Running The Dependency Updater

http://desbuild2.cosmology.illinois.edu/eeups/webservice/dashboard/

The typical user scenario looks as follows: Create a new version of a given 'reference' package by replacing one or several of its direct or indirect
dependencies by a new version.

Let's give a hypothetical example. Assume that you would like to to create a new diffimg version by replacing in diffimg-8.0.28+2 the indirect dependency
python-2.7.6+1 by the updated version python-2.7.7+0. This will assume that you have already added python-2.7.7+0 into the system (which is not at the
time of writing). Then you can run the following command:

$ pkg_propagator --replace python-2.7.6+1 --by python-2.7.7+0 --reference diffimg-8.0.28+2

This results in the following steps:

Step 1: Identify new package versions

The tool does not interact with a local eups repository. Hence, you don't need to first have the 'old' diffimg version installed in your environment. Rather,
the tool fetches the information on new packages to be created from the webserver () and prints them to the console.

In the given example, the relevant parts in the dependency graph are

diffimg-8.0.28+2
--- coreUtils-0.5.2+4
 --- psycopg-2.4.6+4
 --- python-2.7.6+1
 --- cxOracle-5.1.2+8
 --- python-2.7.6+1

The new packages proposed by the system would be the following:

diffimg-8.0.28+3E
--- coreUtils-0.5.2+5E
 --- psycopg2-2.4.6+5E
 --- cxOracle-5.1.2+9E

where psycopg-2.4.6+5E and cxOracle-5.1.2+9E would have dependencies on python-2.7.7+0. The 'E' appended to the package version indicates that by
default EXPERIMENTAL packages are created. On the console, you would see something like:

cxOracle-5.1.2+8 ==> cxOracle-5.1.2+9E
psycopg2-2.4.6+4 ==> psycopg2-2.4.6+5E
coreUtils-0.5.2+4 ==> coreUtils-0.5.2+5E
diffimg-8.0.28+2 ==> diffimg-8.0.28+3E

Note that if there would already be a psyopg2-2.4.6 version with the same dependencies as psycopg-2.4.6+4 but the new python version and identical
build file there would be no need to create a new package version for psyopg2-2.4.6. This is recognized by the system and no new psyopg2-2.4.6 package
version would be proposed. This means that if you specify a reference and a package to be replaced for which a propagated version already exists no
propagation is performed.

Furthermore, it gives you a warning for those 'existing' packages (in the propagated graph) that have not status OK (or INCOMPLETE). Propagating
packages that have already some known problem in one of its dependencies might not be a good thing to do.

Step 2: Checkout old packages and create the new packages

On the command line you are asked whether you want to proceed with the checkout. When confirming that with 'yes' the old package versions to be
replaced are checked out from SVN to the current directory - unless another directory has been specified with the --workdir parameter (see below). Then,
the proposed new package versions are created in the local checkout directory. Note that changes are committed automatically!not

Step 3: Manually check/modifiy the changes

After the checkout has completed and the changes have been applied to the working copies, the tool exits. It does not commit the pkg_propagator
changes directly.

The user can now look at the modified working copies and inspect the work done by . All changes are already marked with pkg_propagator svn add
and are ready for commit.

It is perfectly possible to make manual changes at this point. The directories are regular subversion working copies. This can be very handy, for example to
manually fix the problems reported in step 1.

Step 4: Commit new packages

Commit changes by executing the commit bash script:

$./commit "New diffimg 8.0.28 package version with python updated to 2.7.7."

Further Options

Further command line options available for the pkg_propagator:

Parameter

--workdir Allows you to specify a working directory where the old package versions are checked out from SVN and new package versions will be
created. Defaults to the current directory.

--operational Once set new 'operational' package versions are proposed (without 'E' appended to the package version).

--webservice URL to the webservice from where the information on new package versions can be obtained. Defaults to http://desbuild2.cosmology.
 . Note that this service can be called directly from a web browser. By entering a URL of the illinois.edu/eeups/webservice/propagator

form

<webservice>/E/<replace>/<by>/<reference>

or

<webservice>/O/<replace>/<by>/<reference>

for 'experimental' or 'operational' package versions, respectively. In the angular brackets <replace>, <by>, <reference> you need to
specify package versions such as python-2.7.6+1. As a result, you will see a json file with all the old ('orig') packages and the
corresponding new ('prop') packages to be created.

Example:

http://desbuild2.cosmology.illinois.edu/eeups/webservice/propagator/E/atlas_netlib-3.8.4+6
/atlas_netlib-3.8.4+7/eeups-1.4.3+2

As usual, use

$ pkg_propagator --help

to get help on the command line.

User Scenarios

Create New Experimental Package Version (with dependency update)

Follow the steps described above without setting the --operational parameter. With the above example:

$ pkg_propagator --replace python-2.7.6+1 --by python-2.7.7+0 --reference diffimg-8.0.28+2

This would, as described above, create the packages diffimg-8.0.28+3E, coreUtils-0.5.2+5E, psycopg2-2.4.6+5E, cxOracle-5.1.2+9E.

The package diffimg-8.0.28+3E would then be the package to test and play around with.

Create Operational Package Version associated with the Experimental Package Version

Possibly, once all the tests have successfully been concluded, you would like to create an operational version from that. Currently, the suggested way to
do that is to again run the package propagator by using exactly the same parameters as above - but by setting an additional --operational flag:

http://desbuild2.cosmology.illinois.edu/eeups/webservice/propagator
http://desbuild2.cosmology.illinois.edu/eeups/webservice/propagator

$ pkg_propagator --replace python-2.7.6+1 --by python-2.7.7+0 --reference diffimg-8.0.28+2 --operational

This would propose to create new packages diffimg-8.0.28+4, coreUtils-0.5.2+6, psycopg2-2.4.6+6, cxOracle-5.1.2+10 - as long as no other package
versions have been added for the given product versions (diffimg-8.0.28, coreUtils-0.5.2, psycopg2-2.4.6, cxOracle-5.1.2) in the meantime.

In the future, we may simplify that - e.g. by a command of the form

pkg_propagator diffimg-8.0.28+3E --operational

which would actually create new package versions diffimg-8.0.28+3, coreUtils-0.5.2+5, psycopg2-2.4.6+5, cxOracle-5.1.2+9 (obtained from the
experimental versions by removing the 'E'). in any case, the experimental version will remain in the system.

Known Issues

Currently, only one single dependency can be replaced at the time. Work in progress to replace multiple packages at the same time.
No transaction handling: The propagator interacts with both, the continuous integration build system (for fetching the information which packages
to create) and SVN for the checkout and the commit. The continuous build system needs some time to update its state for SVN changes (at the
order of 30-60 secs) so that SVN and continuous integration build system are not guaranteed to always by concurrent. As a result, users may
experience problems when submitting proposed changes - e.g. when two users want to do the same thing at the same time.

Bulk Propagator

Since the tool can easily create hundreds of packages, it is important to understand how the tool works before it is applied.

The tool operates in several steps:

Step 1: Tell eeups_propagate what to do

First the eeups_propagator analyzes the dependency graph and the arguments given to it, and decides which new packages should be created and what
changes should be made their dependencies.

The following always holds:

No existing packages are changed in any way.
For each product-productversion at most one new + version is introduced, even if several changes have to be applied to it.
Newly introduced + versions are a copy of the previous + version.
The only changes made are to the entries in the table file.setupRequired(..)
No new dependencies are added, nor are dependencies removed. They may be replaced by different versions.

Step 1.1: Most-recent dependencies only

The updates the dependencies of every most-recent + version that has a dependency to a not-most-recent + version. This happens eeups_propagator
if no options are given to :eeups_propagator

$ eeups_propagator

For example, say the following packages exist:

python-2.7.3+0
python-2.7.3+1
python-2.7.3+2
pyfits-3.0.7+0 depends on python 2.7.3+0
pyfits-3.0.8+0 depends on python 2.7.3+0
pyfits-3.0.8+1 depends on python 2.7.3+1

Then two new packages would have to be created:

pyfits-3.0.7+1 depends on python-2.7.3+2
pyfits-3.0.8+2 depends on python-2.7.3+2

eeups_propagator performs those changes as there is little point in having most-recent packages depend on packages with out-dated build and always
table files.

Such changes propagate through the dependency graph. If there is a package that depends on a new version of it would be created as pyfits-3.0.8+1
well, pointing to and so on.pyfits-3.0.8+2

Step 1.2: Replace a product version

Using the option, can also be used if a newly released package has not just changed its --replace oldpackage newpackage eeups_propagator
package version, but also the product version (the part before the +).

For example, say a problem with perl 5.10.1 forces us to switch to perl 5.18.1. A package is created that should replace the old perl-5.18.1+0 perl-
 which is currently used by countless other packages. By default will not do anything here if is the most 5.10.1+1 eeups_propagator perl-5.10.1+1

recent + version of perl.5.10.1. In this scenario we can apply the option:--replace

$ eeups_propagator --replace perl-5.10.1+1 perl-5.18.1+0

Now will 'replace' all dependencies to with dependencies to , meaning that it will create a new + eeups_propagator perl-5.10.1+1 perl-5.18.1+0
version for any package that depends on the old perl package.

Of course the change is propagated upwards through the dependency graph.

Step 2: Plan the changes and verify consistency

Once is invoked, it uses the information given to it to assemble a list of all the packages to be created. It runs the same verification eeups_propagator
routines on them (locally), that would be run on the server if the packages would be created on the eups repository at this stage. This detects if the
changes introduce cyclic dependencies or version conflicts of any kind.

If a problem is encountered, the list of all planned changes is printed out, together with a list of the problems found, and the user is asked if he would like to
continue anyway.

if the option is given, the user is asked for permission to continue even if no problems were found.--askfirst

Step 3: Checking out and applying changes

eeups_propagator will now internally run a for each affected product. The working copies are created in the local directory, unless svn checkout
specified differently with . It checks out the URL of the product specified in the file, that is, it checks out the directory tree under which --work eups.cfg
the build and table files are stored.

The script then applies the changes as planned. It internally uses to create new packages and then modifies the table file as required.svn copy

The changes are commited automatically!not

Step 4: Manually check/modifiy the changes

After the checkout has completed and the changes have been applied to the working copies, the tool exits. It does not commit the eeups_propagator
changes directly.

The user can now look at the modified working copies and inspect the work done by . All changes are already marked with eeups_propagator svn add
and are ready for commit.

It is perfectly possible to make manual changes at this point. The directories are regular subversion working copies. This can be very handy, for example to
manually fix the problems reported in step 2.

Step 5: Commit

Once sufficiently convinced that the changes are fine, they can be commited.

Since there might be a rather large number of working copies that need submitting, eeups_propagator has already prepared a bash script for this.

The script is called and is located in the same directory as the checked out working copies. Invoke it with the commit message as argument:commit

$./commit "Replaced perl-5.10.1+1 with perl-5.18.1+0 in all most recent \+ versions."

The new packages should appear in the eups repository and web pages after the usual delays.

Remember: If something goes very wrong, the changes can always be undone thanks to subversions versioning. See (scroll down to "Undoing Red Book
Changes").

http://svnbook.red-bean.com/en/1.0/ch04s04.html

	EUPS User's Guide

