Writing Blobs

To input data directly associated to a time-annotated resource, use the TimeAnnotatedBlobWriter operator, as shown below:

Resource stream = Resource. uri Ref ("urn: streant');

Ti meAnnot at edBl obWiter bw = new Ti mreAnnot at edBl obWiter();

bw. set Strean(strean);

bw. addl nput (Tenpor al Annot ati on. get I nstant (0), new Fi | el nput St rean("dat a000.jpg"));
cont ext . perfornm(bw);

//wite some netadata about these resources

TripleWiter tw = new TripleWiter();
tw. add(new Tri pl e(stream Dc. FORVAT, "i nage/ j peg"); context.perforn(tw);

the addInput method receives a time annotation and an input stream. The input stream provides access to the data that will be written while the time
annotation indicates the exact frame in the stream, or time-annotated resource, that will contain the data. You can write several blobs in one operation as
long as they are aassociated with time annotations of the same resource:

bw = new Ti meAnnot at edBl obWiter();

bw. set Strean(strean);

bw. addl nput (Tenpor al Annot ati on. getlnstant (1), new Fil el nput Strean{"data001.jpg"));
bw. addl nput (Tenpor al Annot ati on. getlnstant(2), new Fil el nput St rean("data002.jpg"));
bw. addl nput (Tenpor al Annot ati on. getlnstant(3), new Fil el nput Strean("data003.jpg"));
bw. addl nput (Tenpor al Annot ati on. getlnstant(4), new Fil el nput Strean{"data004.pg"));
cont ext . perfornm(bw;

Blobs that are written in one operation will be stored as a single logical group in tupelo to optimize their indexing and retrieval by ranges, although they still
can be accessed separately. This allows the API clients to control the granularity of the storage used for blobs. The performance gains are reduced if blobs
tend be accessed by points in time instead of ranges, or if write operations are performed over discontiguous groups of blobs.

	Writing Blobs

