
NDS Labs API

Overview

The NDSLabs API is a RESTful interface to the NDSLabs system. The API is implemented via the NDSLabs .API Server

Key Concepts

Project: A named configuration that relates an administrative user to a set of resource allocations (quotas), and resources (namespace, pods
/services, volumes, configurations).
Application (aka stack): A set of services that are administratively related (i.e., started and stopped together). For example, "clowder" or
"dataverse"
Service specification: A specification of a logical "service" that includes a name, description, storage requirements, configuration options, and
relationships to other services. An NDSLabs "service" may be composed of multiple related containers.
Service library: A collection of service definitions and procedures for adding official/trusted as well as local/development services.
Application instance: An instance of a service configured and running in a project namespace.
Resource quota: A set of soft and hard limits assigned to a project (storage and compute).
Volume mount: A named, allocated storage resource that counts against the project quota and can be mounted by one or more services.

A Simple Use Case

Using the CLI for simplicity: a project administrator wants to add a set of services to their project configuration:

Command What it does Response

list services Lists the services in the service library that can be added to this project. clowder

image-preview

get service clowder Gets the service specification <spec>

add service clowder Adds the specified service to the project OK

set env smtp-host smtp.ncsa.illinois.edu Sets a configuration option for the named services OK

start clowder Starts the service <status>

status clowder Returns the service status <status>

add service image-preview Adds the specified service to the project OK

start image-preview Starts the image preview service and updates the clowder service? <status>

stop services Stops everything <status>

Entities

The following is a simple entity-relationship diagram intended to capture the entities, attributes, and relationships for the NDSLabs API.

https://github.com/nds-org/ndslabs

REST API

For actor definitions, see .NDS Labs Use Cases

Base path: /api/

Path Action Project Admin Cluster Admin Notes

/ List available paths GET GET

/authenticate PUT PUT returns token

/services List, add site-wide and project-specific services GET, PUT PUT

/services/{service-id} Get, update, delete site-wide services GET PUT, DELETE

/services/templates/{service-id}/{service|controller} Put, get, delete service templates GET PUT, DELETE

/projects List, add projects GET, PUT

/projects/{project-id} Get, update, delete project GET, PUT DELETE

/projects/{project-id}/serviceInstances List, add project services GET, PUT

/projects/{project-id}/serviceInstances/{instance-id} Get, update, delete project service GET, PUT, DELETE

/projects/{project-id}/serviceInstances/{instance-id}/status Get, update, delete project services status GET, PUT, DELETE start, stop, restart

/projects/{project-id}/serviceInstance/{instance-id}/config Get, update, delete service configurations GET, PUT, DELETE

/projects/{project-id}/volumes List, add project volumes GET, PUT

/projects/{project-id}/volumes/{volume-id} Get, update, delete project volumes GET, PUT, DELETE

/projects/{project-id}/{stack-id} Get, update, delete service stack GET, PUT, DELETE

/projects/{project-id}/{stack-id}/actions/{action} Start/Stop a stack GET,PUT

/projects/{project-id}/{stack-id}/services/{service-id} Get, update, delete services in a stack GET, PUT, DELETE

/version Get server version GET GET

/refresh_token Get a new token GET GET

/register Post a new project POST

/console Get a Websocket connection to a console GET

The latest version of the API specification is available in Github:

https://github.com/nds-org/ndslabs/blob/master/apis/swagger-spec/ndslabs.yaml

This can be opened using the Swagger editor demo , if desired.http://editor.swagger.io/

Authentication

The API Server currently uses the JSON Web-Token (JWT) approach. The basic flow is as follows:

POST to /authenticate
{"username": "demo", "password": "12345"}

response
{"token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
eyJleHAiOjE0NTY4NzE3ODgsImlkIjoiZGVtbyIsIm9yaWdfaWF0IjoxNDU2ODY5OTg4fQ.pJ2CQyqXDV675KrAtz3qVzwbM7k-
tnZ28Pc0o81GtGU"}

For all subsequent requests, include the following header:
Authorization: Bearer TOKEN

To refresh the token, simply GET /refresh_token, this will retrieve an updated token

Volumes

If development environment, creating a volume is just a mkdir on some local path
If production environment, creating a volume requires a call to the Openstack API (Create, Attach) then a local call to mkfs, then a call to the
Openstack API (Detach)

https://opensource.ncsa.illinois.edu/confluence/display/NDS/NDS+Labs+Use+Cases
https://github.com/nds-org/ndslabs/blob/master/apis/swagger-spec/ndslabs.yaml
http://editor.swagger.io/#/
https://godoc.org/golang.org/x/oauth2/jwt

API Server (prototype)

The prototype NDSLabs API Server will be used by the CLI and GUI applications.

Components

We envision the following components:

CLI
API Server (either a Jetty application or Go server)
etcd: Store for service library, project definitions, and services
Kubernetes API (for interaction with Kubernetes services, etc).client
Openstack client to handle volume allocation/initialization tasks

API Authentication

For the CLI, we could follow the using client certificates. They use openssl/easyrsa to sign client Kubernetes API server authentication model
certificates where the common name is the username (or in our case, project namespace).
This is not useful for the GUI, which might require user authentication. Perhaps we can pre-generate a password?

Service definitions

How will we manage service definitions going forward so that new services can be added without requiring access to the nds-labs repository? We need to
handle two cases: official or trusted services and services under development. The Docker model might suit us: official service definitions are stored in an
SCM repo. A repo watcher polls HEAD for changes and imports new definitions into the service library (e.g., etcd). We can use pull requests to handle
trust and verification. To handle development, we could store "draft" definitions in a way that are only accessible to a specific project. For example, the
developer could issue "cli add service -f myservice.spec" and the service would be added to services/{namespace} or namespace/services. The "cli list
services" would return both official and project-local definitions.

http://kubernetes.io/v1.1/docs/devel/client-libraries.html
https://github.com/kubernetes/kubernetes/blob/master/docs/admin/authentication.md

	NDS Labs API

