
1.
a.

i.
ii.

b.
i.

1.
2.
3.
4.

2.
a.

i.
ii.
iii.

3.
a.

i.
1.
2.

ii.
1.
2.

a.
b.

i.
ii.
iii.

4.
a.

i.
1.
2.

b.
i.

1.
a.

2.

ii.
1.

a.

b.
c.

c.
i.
ii.

1.
iii.
iv.

5.
a.
b.

i.
ii.
iii.

6.
a.
b.
c.
d.
e.
f.

g.

pyGeodashboard
Development of pyGeodashboard started on 2016-02-04. It is a library that contains the basic functions needed for parsing sensors, streams, and
datapoints to the geostreaming API.

Step 1: Outline Parser Functions
Create a outline that describes the process of parsing with focus on separating reusable portions of a parser from those that are
particular to a specific data source.

Outline Parser Functions

Functions will be described as = code particular to the source and = should be able to run as part of every sourceunique general

Get data from source (unique)
Parsing begins by getting the data from the source. Two types of data are needed:

data that describes the site such as geocodes, name, and source.
measurements (the data)

The format and retrieval method varies from source to source
Some source formats

API for a single station (USGS,NOAA,EPA)
API for mixed stations (Water Quality Portal)
Files stored to server with loggetnet (GREON)
csv download (LRTM)

Parse data to sensor (unique and general)
Up till now, this has been a unique process for each source; however, this portion should be broken into unique and general portions

reformat data into a standard that can be input into general parser (unique)
parse data to sensor json (general)
post to geostreaming api (general)

Parse data to stream(s) (unique abd general)
Similar to parse to sensor, with the main difference being that sources can have multiple stream for different reasons.

For example:
GREON uses 2 streams - one for water quality data and one for environmental data
USGS uses 5 streams - water quality measurements, gap filled nitrate, gap filled discharge, load, and cumulative load

two different conventions have been used, and need to be standardized
GREON names the streams differently: GREON-07_MD or GREON-07_WQ
USGS puts a data_type key in properties with possible values: source_data, fill_nitrate, fill_discharge, calc_load, and
calc_cumul_load

Probably should be discussed and decided.
Currently, each source has it's own implementation, like sensors, and should be broken into unique and general portions

get stream data from source including determining number of streams needed and parsing data to standard format (unique)
parse data to stream json (general)
post to geostreaming api

Parse data to datapoints (unique and general)
Initial parse versus continuous parsing

Parsing data to a site continuously (parsing at a regular interval) has some challenges
need to know the last datapoint parsed (general)
more efficient to only fetch source data from that time forward (unique)

Considerations
Time - keeping track of time zone and daylight savings time is challenging

The geostreaming api stores time in UTC (Zulu)
sources store time in a variety of formats

The suggested standard: all retrieved data should be converted to UTC as soon as possible within the scripts and
handled in UTC.

Memory
The earliest versions of the parsers loaded all data into memory from a single station and parsed from memory

after adding new usgs sites, it became apparent that this would not work on a server with ~2GB memory (or
even larger as datasets grow)
 2 approaches were considered: disk storage and parsing by time period
it was decided to parse one year at a time

Parsing
fetch data from source (unique)
parse to standard format (unique)

map measurement names to standardized parameter ids
parse to datapoint json (general)
post to geostreaming api (general)

Gap filling and load calculations
At the moment, these are only run on USGS data
This should be generalizable to any stream that contains the needed parameters

Gap Filling: should take the source data stream and fill parameter
Load calculation: should take the source data stream and gap fill streams as input
Cumulative load calculation: should take the load stream as input

List of methods that should be general (or have several general versions)
create or get sensor/stream
parse to sensor json
parse to stream json
parse to datapoint json
post
get

6.

g.
h.
i.
j.

i.

get most recent datapoint
iterate over a year of data
convert time
map_names

 needs to be standardized across sources with different column names mapped to standard parameter ids

	pyGeodashboard

