
1.
a.

i.
b.

2.
3.

4.
5.

1.
2.
3.
4.
5.
6.

1.
a.

2.

a.

Service Catalog, Configuration, and Deployment (CCD)
System
Description

The service catalog binds together the K8s service files for deploying the service, service descriptions for project admins to configure a service with options
via a CLI/GUI, and provides interfaces to configure service repositories and to manage and maintain the per-cluster service catalog that is cached in etcd.

Design Session Notes - 16/02/16:

Resolved:

Dev side: Separate docker image builds from catalog/configure/deploy files
proposed repo names: ndslabs/images.git, ndslabs/ccd.git

CCD:
Catalog file - Declarative

static service description
composite dependencies for composites
Config options (simple)

Configure -
Assign options and provision resources

Deploy -
generate K8s and run

Unresolved:

Workflow and format for CCD spec files
Detailed defn and workflow

Catalog generation from catalogs in URL
Simple aggregation of static data - yes?

Configure time - options vs resources
Options

validatable
May influence subordinates

Other options - ex. (log(yes|no)->yes)->logfile(input(name))
Resources - ex. (logvol(named)->yes)->vols.map(logvol(lookup(name)))

Resources
Need lookup in system

volumes, etc.
need consistent naming/identification scheme

Generating K8s
Unknown, but could leverage other declarative->declarative transformation tools

Design Notes - 16/02/15:

Goals

Simplicity - Easy to understand and use for cluster admins, project admins, and tool/service developers
Glean as much optional information as possible from build/images/K8s manifests

Volumes, ports, scalability(replication controllers), etc. -
Sensible and simple defaults, with expert override support for Project deployments

Automation - Set the catalog references and run - updates/changes appear without intervention
Extensible - Multiple catalogs - nds, other-public and private catalogs per-cluster, support experimental/dev ad-hoc use in shared and person
dev environments
Independent - Not tightly bound to NDS or , does not require administrative intervention for developersdocker.io
Trusted - support signing/verification as an option for service repos and individual services

Workflow Support:

Develop - create descriptions with source
Publish - publish catalog service descriptions when publishing image
Catalog to Cluster - Cluster admins add catalog refs to cluster, catalog automatically available
Service Configuration - Project admin selects from cluster catalog, resolves service options in (CLI/GUI) to generate a deployment on cluster
Service Deploy - Project admin deploys configured service in cluster run-time
Manage - Track per-project deploys and feedback configuration to CLI/GUI for reconfig (scaling, data mgmt, etc.)

Data Types and Objects

Kubernetes Pod manifest, Service manifest, and Replication Controller Manifest
Container images (by reference)

Catalog-specific info and configuration data (to be specified)

http://docker.io/

2.

a.
3.
4.

1.
a.
b.
c.
d.
e.
f.

a.
i.
ii.
iii.
iv.

b.
i.
ii.

1.
2.
3.

c.
i.
ii.
iii.

d.
i.
ii.
iii.

e.
i.
ii.
iii.
iv.

f.
i.
ii.

Configuration options
Etcd catalog: Above information cached under /nds/service/catalog/<catalog-ref>/<service-name>
Project Admin Input: The optional configuration information provided by the project admin on configure/deploy

Implementation Possibilities

Service and Configuration file locations:
Service/config distributed inside the implementation container(s) in a specified path: /usr/local/etc/nds/...
Service/config outside container, in parallel catalog server system (Juju model)
Service/Config in related containers, using name-associations (<service>, <service>-ndscat)
Service/Config in related containers with parallel service and config docker repos: ndslabs-service with ndslabs
Service/Config In image tags via Docker, (LABEL in Dockerfile)
Service/Config in git repositories

Discussion:

Simple, docker model, single-image, spec/image not independent
Assume immutable container - service spec's immutable
Requires pulling containers to access catalog/service info
startup overhead to pull everything NDS at cluster/catalog start
Needs catalog-side pull/add for new/changed images

Complex custom model - requires most development
Service spec independent of image
Requires moderate implementation

catalog server and population process
cluster-side catalog sync for image additions and updates
Difficult independence for devs and 3rd parties - requires catalog server deployment

Simpler with svc-spec independence and docker model
Harnesses docker repos
Needs docker naming scheme that is searchable via docker cli
Catalog update - search/pull from repos and store - simple

Complex, not entirely docker-model with svc/container independence
Dual-repo version of #3
Push to 2 repos involves parallel tagging and dual repo creds
Prefer #3 for simplicity?

Simple, docker model, svc/image not independent
Similar to #1 without entering container
Efficient if it's possible to pull only image meta without layers
Can leverage other meta-data
Image meta also contains definitive volumes and ports spec's which we need

Simple, svc/image independent, may complicate developers
Easy - parallel git repo for services
Nice to keep service/configurator/K8s together - single repos

Other Ideas:

Use an active configurator object/container provided by developer (Juju model)
Probably impractical and likely to be misused (shortcuts)

	Service Catalog, Configuration, and Deployment (CCD) System

