Resolving Merge Conflicts

Case: Adding a new feature to the source

So you followed the workflow described above, create a fork and maybe even a new branch to avoid collisions.

Now you go to make a pull request and it says "Cannot automatically merge"

n We can’t automatically merge this pull request. r

Use the command line to resalve conflicts before continuing.

Gimme a break! We went through all of that and there's still going to be merge conflicts? Welcome to source control, my friend.
Not to worry! These things can usually be easily resolved if you are following the feature-branching advice given above.

(You are creating separate branches for each of your features, aren't you? This minimizes the size of potential conflicts by isolating each set of related
changes. See below.

Pull from Upstream

On your local copy, pull from upstream to grab any changes to the upstream repo:

$ git pull upstream naster
renote: Counting objects: 4, done.
renot e: Conpressing objects: 100% (1/1), done.
renote: Total 4 (delta 3), reused 4 (delta 3), pack-reused 0
Unpacki ng obj ects: 100% (4/4), done.
From https://github. conl nds-or g/ ndsl abs- specs
* branch mast er -> FETCH_HEAD
* [new branch] mast er -> upstreani mast er
Aut o- mer gi ng cl owder/ cl owder . j son
CONFLI CT (content): Merge conflict in clowder/clowder.json
Automatic nerge failed; fix conflicts and then commit the result.

Notice the line starting with CONFLICT, which indicates that you will manually need to fix this file.

Locate Offending Conflicts

Open the file in your favorite editor and you should see the conflict(s) surrounded by > and <:

{
"nane": " RABBI TMQ_EXCHANGE",
"val ue": "clowder",
"canOverride": false

I

{

<<<<<<< HEAD
"nanme": "TOOLMANAGER URI ",
"val ue": "l ocal host:8082",

nane": "TOOLMGR URI",
"value": "http://Ilocal host: 8082",
>>>>>>> 807f 37cbf 505e06469a7b54429be5e3a60dd26d3
"| abel ": "Tool Server address",
"canOverride": true

<<<<<<< HEAD indicates the HEAD of your current local working copy ("your" modifications)

>>>>>>> COMMIT SHA HASH indicates the SHA hash of the conflicting commit (“their" modifications)

Resolve Any Conflicts

Edit each file appropriately to resolve the merge conflict(s).

Simply remove any excess bits and retain only the file that you wish to commit:

{
"nanme": " RABBI TMQ EXCHANGE",
"val ue": "cl owder",
"canOverride": false
I
{
"nane": "TOOLMANAGER URI ",
"value": "http://Ilocal host:8082",
"| abel ": "Tool Server address",
"canOverride": true
}
1.
"ports": [
{

Tell Git that you have Resolved the Conflicts
Now re-add any conflicting files to git's index.
This will mark the conflict as resolved, and stage the files for commit.

Now you should be able to commit to your local copy, then push to your personal fork:

$ git status
On branch master
Your branch is up-to-date with 'origin/mster'.
You have unnerged paths.

(fix conflicts and run "git comit")
Unner ged pat hs:

(use "git add <file> .." to mark resol ution)

bot h nodified: cl owder/ cl owder. j son

no changes added to commit (use "git add" and/or "git commit -a")

$ git add cl owder/cl owder.json

$ git coomit -a -m"Fixed nerge conflict"
[mast er e09f5a2] Fi xed nerge conflict
1 file changed, 1 insertion(+), 1 deletion(-)

$ git push origin master

Usernane for 'https://github.coni: your-git-usernane

Password for 'https://your-git-username@ithub.com :

Counting objects: 4, done.

Delta conpression using up to 8 threads.

Conpressi ng objects: 100% (4/4), done.

Witing objects: 100% (4/4), 366 bytes | 0 bytes/s, done.

Total 4 (delta 3), reused 0 (delta 0)

To https://github.com your-git-usernanme/ ndsl abs-specs. git
c241a36..e09f5a2 master -> master

Verify that Conflict is Resolved

You should now see that your outstanding Pull Request, if you made one, has been updated to include your newly pushed commit.

Hopefully the indicator changed from gray (conflict) to green (mergeable), and your conflict has been resolved:

}o This branch has no conflicts with the base branch
Only those with write access to this repository can merge pull requests.

NOTE: You may need to perform these steps multiple times to work out all merge conflicts.

With a fully resolved branch, pulling should yield the following messages:

$ git pull upstream naster

From https://github. com nds- or g/ ndsl abs- specs
* branch mast er -> FETCH_HEAD

Al ready up-to-date.

	Resolving Merge Conflicts

