
1.

2.
a.
b.

c.

1.

2.
3.

1.

2.
3.
4.

1.
2.

Polyglot Refactoring for Dockerizing SSes
For BD-1007: Polyglot refactoring for dockerizing SSes, mainly in the POL-SS communication part.

Current Polyglot-SS communication architecture:

In the existing architecure, both Polyglot and SS are servers. Polyglot-SS communication mainly occurs at SS registration, SS heartbeat, SS checking in
converted files, and Polyglot redirecting file-getting requests to a SS.

SS Registration and heartbeat.
Refer to the development notes at the , POL goes to RabbitMQ, gets the consumer IPs as the "Polyglot / SoftwareServer Documentation" page
SSes, connects to the URL "<ip>:8182/applications". If the URL is accessible and contains valid content, Polyglot adds the IP to its server list.

SS supports many REST endpoints. PolyglotStewardAMQ uses "/alive" and "/applications" for SS registration and "/alive" for heartbeat:
/alive
This returns a timestamp (a long integer) to indicate the start time of the SS. (long int, plain text)
Used for adding a SS in discoveryAMQ() if POL gets a valid long int, and removing a SS in heartbeat() if POL does not get a
valid long int from the ep.
/applications
This returns a JSON array, such as "[{"alias":"daffodil","conversions":[{"inputs":["csv"],"outputs":["xml"]},{"inputs":["pgm"],"
outputs":["xml"]}]},{"alias":"flac","conversions":[{"inputs":["aif","aiff","fla","flac","wav"],"outputs":["aif","aiff","fla","flac","wav"]}]".
Used for adding a SS and updating the IO graph in discoveryAMQ().

SS checkin.
SS check in the result to Polyglot (<url1>).
Polyglot updates Mongo, if all steps done, creates a file "<filename1>.url" with the 2nd line as "URL=<url1>", such as "URL=http://141.

".142.210.2:8182/file/81_browndog.jpg
When a user accesses POL redirects the request to <url1>.http://pol1:8184/file/filename1,

 Proposed design:

SS registration with polyglot.
Add 1 exchange/queue for SS registration with polyglot.
Set its TTL to say 5 secs, so msgs are discarded in such time.
SS publishes msgs to this queue, each msg contains both start_time and conversion capabilities.
Polyglot listens to the queue, adds/updates its SS list and updates IO-graph accordingly. Adds a "latest heartbeat time" for each SS.

In "checkin", SS uploads the converted file – instead of sending only the filename. Polyglot saves it, instead of creating a "<file>.url" file.
SS heartbeat with polyglot.

Periodically Polyglot removes SSs that have expired "latest heartbeat time" from its SS list, and updates IO-graph accordingly. No need
to process RabbitMQ msg in this thread.

What need to be added or changed:

POL now adds SSes in discoveryAMQ(), removes (non-responsive) SSes in heartbeat(). Change to: POL listens to a new queue, adds SSes and
updates timestamps in discovery thread, and removes SSes with expired timestamps in heartbeat thread. NO querying of SSes.
In SS: add code to publish conversion capability msgs to a new queue in RabbitMQ for POLs to listen to for SS registration and heartbeat.
In SS: add code to upload converted files, in polyglot: add code to save them;
In PolyglotStewardAMQ: that creates "<file1.url>".remove the code

With this design, a SS can keep its REST endpoints, but POL does not query them. So it does not matter whether multiple SS containers run on the same
VM or different VMs.

Notes:

use Java for the server_map in PolyglotStewardAMQ discoveryAMQ() for multi-threaded access.ConcurrentSkipListMap
The following Polyglot REST endpoints in PolyglotRestlet.java accesses/redirects to SS.

/file/<file1>
servers/<server_ip1>[/...]
software/<sw1>[/...]

https://opensource.ncsa.illinois.edu/confluence/pages/viewpage.action?pageId=57737343
http://141.142.210.2:8182/file/81_browndog.jpg
http://141.142.210.2:8182/file/81_browndog.jpg
http://pol1:8184/file/filename1,
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentSkipListMap.html

	Polyglot Refactoring for Dockerizing SSes

