
1.

2.

3.

4.

5.
6.

7.

8.

9.

1.

2.

3.

Developer Workflows
All documentation pertaining to how developers can contribute to NDS Labs.

New to NDS Labs?
Develop Workflows

An Example
More Detail

Release Workflows
New Unstable "Test" Release

Prerequisites
Developer's Process (Semi-automatic)
Tester's Process (Manual)

New Unstable "Latest" Release
Prerequisites
Process (Automatic)

Official Tagged Version Release (Stable)
Prerequisites
Process (Semi-automatic)

Legacy Process

New to NDS Labs?
Start here: New Developer Workflow

Develop Workflows
JIRA Workflows: Issue and project tracking workflows
Git Workflows: Forking workflow with feature branches

Fork repo (if applicable)
Press "Fork" in GitHub UI

Clone repo to make changes locally (if applicable)
git clone https://github.com/USERNAME/ndslabs.git
git remote add upstream https://github.com/nds-org/ndslabs.git

Ensure correct branch and sync with upstream before making additional changes
git checkout master
git pull upstream master

Create a branch named after the (for example)Story - NDS-174 Getting issue details... STATUS

git checkout -b NDS-174
Make any necessary modifications locally on your branch
Stage any modified files for commit

git add path/to/modified/file.ext
Commit any modifications to your local branch with a comment

git commit -m "A comment about this commit"
Push any local commits back up to your remote branch (your forked repo)

git push origin NDS-174
When you are satisfied with your set of commits, create a Pull Request (PR) to view the diff

Press "Pull Request" in GitHub UI
Be sure to select the correct base and compare branches

Select as the nds-org/ndslabs base fork
Select as the master base branch
Select your personal fork () as the USERNAME/ndslabs head fork
Select your personal branch as the Story compare branch

Scroll down and click on the "Files Changed" tab to briefly review your own Pull Request
Ensure that all changes made on this branch were intentional
If you are unsure about any specific code segments, comment in-line on the PR to ask for clarification
If you are unsure about any general concepts changed or introduced, comment in the section at the bottom of the PR

Name your Pull Request after the / branch (i.e. "NDS-174: User can access console of running service via CLI") Story
Enter a short description of any modifications, additions, or removals from the codebase

If applicable, include a Test Case that the reviewer should run before merging the Pull Request
Click "Create Pull Request"

Docker Workflows: Push any necessary test images to Docker Hub
Build test image

docker build -t ndslabs/apiserver:dev .
Tag test image with id (i.e. NDS-174)Story

docker tag ndslabs/apiserver:dev ndslabs/apiserver:NDS-174
Push test image to Docker Hub

docker push ndslabs/apiserver:NDS-174
Kubernetes Workflows: Sometimes used in testing new services or the API server

https://opensource.ncsa.illinois.edu/confluence/display/NDS/New+Developer+Workflow
https://opensource.ncsa.illinois.edu/confluence/display/NDS/JIRA+Workflows
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Git+Workflows
https://github.com/USERNAME/ndslabs.git
https://github.com/nds-org/ndslabs.git
https://opensource.ncsa.illinois.edu/jira/browse/NDS-174
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Docker+Workflows
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Kubernetes+Workflow

1.
2.

3.
4.
5.
6.

7.
8.
9.

An Example

https://github.com/bodom0015/developer-workflow

More Detail

New Developer Workflow
JIRA Workflows
Git Workflows

Forking Workflow
Feature Branches
Resolving Merge Conflicts
Splitting a Repository While Preserving History

Docker Workflows
Installing Docker
Using Docker Images
Building Custom Docker Images

Kubernetes Workflows
Downloading kubectl
Deploying a Cluster

Multi Node Kubernetes developer environment - using VBox/Vagrant/CoreOS

Release Workflows

New Unstable "Test" Release

Prerequisites

Pull request has been created containing the changes to be reviewed / tested
Ensure that associated JIRA ticket contains a test case
Ensure that your current code passes the test case that you have written
Ensure documentation in Confluence is up-to-date
Checkout your feature branch

git checkout master
Sync with upstream

git pull upstream master
git push origin master

Update any relevant documentation in GitHub

Developer's Process (Semi-automatic)

"Start Progress" on one of your assigned tickets (assign a new one if you have none assigned)
If you haven't already, the upstream repository (you will only need to do this once per repository)fork

Set up an of your new fork on DockerHubautomatic build
Configure the build to build all new branches from GitHub (choose "Branch" and leave the branch name blank)
Push these new branch builds to a Docker image tag of the same name (simply leave the tag name blank)
Once saved,

Clone your fork onto your local machine
Create / switch to a development branch (named after one the JIRA ticket associated with the work being done, i.e. NDS-XXX)
Make any necessary changes to fulfill the JIRA ticket
Commit all associated changes and push them to GitHub

Any new changes pushed to any branch on your GitHub fork will be automatically built into an image of the same name on DockerHub
Mark ticket as "In Review" and assign to an available Tester
Wait for the ticket to be assigned back to you
Review the Tester's results

If the Tester encountered problems, choose go back to #5 and address themReview Rejected
If the Tester submitted comments or feedback, do your best to address their concerns or comment back to come to consensus
If both Developer and Tester

Tester's Process (Manual)

Ensure that all associated auto-build images have completed their builds before beginning testing
Links to these images should be provided with the test case.

Run through the test case described in the associated ticket(s)
A test case should be provided in the comments of each ticket, where appropriate. If it is not, send it back to the Developer.
The test case should include success and / or failure criteria. If it does not, send it back to the Developer.

Update the associated JIRA tickets:
Briefly include the results of your testing
Be sure to leave feedback for the developer if you need them to take action
If something went wrong or the Tester still has questions, choose assign it back to the Developer, and wait for a reply Review Rejected,
or the ticket to comeback to you

https://github.com/bodom0015/developer-workflow
https://opensource.ncsa.illinois.edu/confluence/display/NDS/New+Developer+Workflow
https://opensource.ncsa.illinois.edu/confluence/display/NDS/JIRA+Workflows
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Git+Workflows
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Forking+Workflow
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Feature+Branches
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Resolving+Merge+Conflicts
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Splitting+a+Repository+While+Preserving+History
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Docker+Workflows
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Installing+Docker
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Using+Docker+Images
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Building+Custom+Docker+Images
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Kubernetes+Workflows
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Downloading+kubectl
https://opensource.ncsa.illinois.edu/confluence/display/NDS/Deploying+a+Cluster
https://opensource.ncsa.illinois.edu/confluence/pages/viewpage.action?pageId=105251140
https://help.github.com/articles/fork-a-repo/
https://docs.docker.com/docker-hub/builds/
https://help.github.com/articles/cloning-a-repository/

1.

2.
a.

i.
ii.
iii.
iv.
v.
vi.

b.
i.

c.
i.
ii.

d.
i.

3.
a.

4.
a.

5.
a.
b.

6.
a.
b.

If all test cases pass according to the standards set in the ticket and its comments, choose and assign it back to the Review Accepted
Developer

After all tickets in the associated JIRA tickets are marked as , merge the Pull Request into the branch on the nds-org GitHubResolved master
Merging any PRs to will automatically trigger a build of "latest" on DockerHub (see below)upstream master

New Unstable "Latest" Release

Prerequisites

Any related PRs have been merged to master
Ensure that smoke test passes
Ensure documentation in Confluence is up-to-date
Checkout your master branch

git checkout master
Sync with upstream

git pull upstream master
git push origin master

Update ALL documentation in GitHub

Process (Automatic)

New "latest" Docker images are automatically built from the branch on GitHub.upstream master
All new changes that make it into master on GitHub will automatically trigger a build on DockerHub

For example: https://hub.docker.com/r/ndslabs/apiserver/builds/

Official Tagged Version Release (Stable)

Prerequisites

Ensure that all tests pass
Ensure documentation in Confluence is up-to-date
Checkout your master branch

git checkout master
Sync with upstream

git pull upstream master
git push origin master

Update ALL documentation in GitHub

Process (Semi-automatic)

For each repo: branch off of to create a release branchdevelop
ndslabs and workbench-helm-chart

OR

kubeadm-bootstrap and kubeadm-terraform
Roll versions forward

ndslabs
gui/swagger.yaml: NDS Labs swagger API spec version number
apiserver/build.sh: NDS Labs API Server Docker image version tag
apiserver/cmd/clientVersion.go: NDS Labs CLI version number / build date
gui/Dockerfile: NDS Labs UI / webserver Docker image version tag
gui/package.json: NDS Labs UI / webserver NPM package version number
gui/ConfigModule.js: NDS Labs UI Angular app build version number

workbench-helm-chart
values.yaml: NDS Labs API Server + UI Docker image version tags

kubeadm-bootstrap
install-kubeadm.bash: Kubernetes / Docker version numbers
init-master.bash: Helm version numbers

kubeadm-terraform
kubeadm-bootstrap git release/tag: assets/bootstrap.sh

PR from release branch to master
Thorough testing, then more testing, then merge to master

Tag master with new version number (freshly tested and stable)
Any new merges and tags will trigger new Docker images to be built

Wait for newly-tagged resources to automatically finish building and pushing Docker images
Run a quick smoke test with newly-tagged resources
Fix any last-minute errors directly on master and recreate release

Backport any missing changes from release-x.x.x into develop
This should include, at the very least, a commit from the release branch that rolls forward to new version numbers
git checkout develop && git pull origin master && git push origin develop? Why does this not work with a PR...

Legacy Process

https://hub.docker.com/r/ndslabs/apiserver/builds/

1.

2.

3.
a.

i.
ii.

iii.
iv.
v.

vi.
vii.
viii.
ix.

x.

xi.

b.
c.

4.

Regenerate Swagger API / Client from spec (this can be skipped if the spec has not changed)
apiserver/???: generated Go swagger server
gui/js/app/shared/api.js: generated AngularJS swagger client

Roll forward version numbers in and ensure that all values match :ndslabs-deploy-tools the version number you are about to create
roles/cluster-backup/defaults/main.yml
roles/ndslabs-api-gui/defaults/main.yml
roles/k8s-nagios-nrpe/defaults/main.yml
roles/k8-glfs-server-pods/defaults/main.yml
roles/k8-glfs-client-set/defaults/main.yml

Create a new tag from master in GitHub for the new version (i.e. 1.0.0, 1.0.1, etc):
Repositories should be tagged in the following order when possible:

ndslabs (API server / REST API / CLI / UI)
ndslabs-specs (service specs - starting with 1.2.0, this can be versioned separately from Workbench, but it should be noted
upon a new release which version of Workbench the specs release will target)
workbench-helm-chart (Helm deployment to Kubernetes)
gluster (global file system - deprecated, no longer used)
cluster-backup (cron job for backing up glfs / etcd / kubectl dump - starting with 1.2.0, this can be versioned separately from
Workbench)
ndslabs-nrpe (nagios monitoring - these can now be versioned separately from the rest of Labs Workbench)
ndslabs-startup (dev-cluster startup - deprecated, no longer used)
ndslabs-deploy-tools (ansible scripts - deprecated, no longer used)
kubeadm-bootstrap (kubernetes deployment scripts - versioned separately, but it should be noted upon a new release which
version of Workbench the release will target)
kubeadm-terraform (terraform deployment procedure - versioned separately, but it should be noted upon a new release which
version of Workbench the release will target)
ndslabs-devenvs (developer environments - these can now be versioned separately from the rest of Labs Workbench)

NOTE: ndslabs-devenvs contains a large number of cascading images that will quickly fill up the build queue, that's
why we do it last

New versioned Docker images are automatically built from the tags created on GitHub.upstream
All new tags that are created will trigger a build

For example: https://hub.docker.com/r/ndslabs/apiserver/builds/
Roll forward version numbers in source and ensure that all values match on on GitHub:upstream master

Swagger API
apis/swagger-spec/ndslabs.yaml: NDS Labs swagger API spec version number (deprecated - use the file below instead)
gui/swagger.yaml: NDS Labs swagger API spec version number

API Server:
apiserver/build.sh: NDS Labs API Server Docker image version tag
apiserver/version.go: NDS Labs API / Server version number file no longer exists

CLI Client:
apictl/build.sh: NDS Labs CLI version number file no longer exists
apictl/cmd/clientVersion.go: NDS Labs CLI / API version number file no longer exists

UI Client:
gui/Dockerfile: NDS Labs UI / webserver Docker image version tag
gui/package.json: NDS Labs UI / webserver NPM package version number
gui/bower.json: NDS Labs UI Angular app Bower package version number file no longer exists
gui/ConfigModule.js: NDS Labs UI Angular app build version number

https://hub.docker.com/r/ndslabs/apiserver/builds/

	Developer Workflows

