Monitoring, Backup/Disaster Recovery, Performance
Testing, Capacity Planning

® Monitoring
® Backup/Disaster Recovery
© Process
® Performance Testing
O Open Questions
® Capacity Planning

Monitoring

See NDS Labs Monitoring.

Backup/Disaster Recovery

. GFS, Etcd "best effort" for beta
. Cluster config (using kubectl)
. Deploy tools provisioning

wWN

Where? AWS, BW, TACC
How? Some script/Job/rsync
When? Daily rolling

© Hot backup of DBs — backupz + side car
® GFS backup options, depends on # of users

© Snapshots + diffs

O Checkpointing

© Replication to another GFS/geolocation

Process

@ Backup and DR Procedures

Backup DR PI an:

This backup/DR plan is intended for energency use to recover the systemto a recent and operational
state quickly,
with user/systemstate restored to the time of the backup in toto. It is not intended as a "user-
backup" strategy where users
can request accidentally deleted data due to user error or as a partial-state restoration mechani sm

Sources of data at risk:
Provi si oni ng data (ansi bl e/ SAVED_VOLUVE/ provi si oni ng i mage/ version):
includes original state of cluster, images, sizes, addresses, etc.
Size is small and constant (kb-nb) : provisioning image reference, inventory, dunp of all
ansi bl e vari abl es post-provision
Kubernetes cluster info (cluster-dunp, etcd-dunp)
includes current cluster configuration fromkubernetes adnmin view and the
raw dat a-dunp of the full etcd configuration database
Size is small and grows linearly in small increments with #users
d obal vol unme data (/var/glfs/global)
Al'l system and user data stored in the cluster global filesystem
Size is variable and assuned to be in the GB to TB range

Ret enti on:

At | east one 'latest' state dunp of the systemis required, giving retention of one dunp-period.

A rolling stack of N'latest' dunps is preferable for safety in case a dunp failure | eaves the |atest
corrupted,

this increased retention to N tinmes the dunp-period, and requires N tinmes storage capacity.

Arolling level -based strategy rolls the last N dunps, and every cycle pronotes the |ast dump to a
hi gher-1evel M

set where the period of Mis N Typi cal strategies include N=7, M5 which saves a week of daily
dunps and 5

rolling weekly copies, giving retention of 5 weeks with MtN storage required. The periods of Mand N
can be adjusted

to acconpdate tradeoff between ability to recover 'fresh' data, storage requirements, and operational
requirenents.

Incremental vs full-copy:

To achieve better resource utilization a 2 layer NNMstrategy start with a full-copy M followed by N
i ncremental dunps

agai nst the nost recent M This minimzes the data transfer and storage requirenents according to

https://opensource.ncsa.illinois.edu/confluence/pages/viewpage.action?pageId=96174315

how rmuch data is

recently changed. For sl ow changing systens the lower |inmt is Mcopies, for high-churn filesystens
the upper limt

approaches N+M for total storage required. This strategy is useful in |owchange scenarios due to
the savings, but adds

conplexity in the restore process which requires restoring the latest M and then all the incenental
N's since the last M

DR storage requirenents:

DR shoul d be off-site, geographically dispersed as wi dely as possible, and sized to support the
storage needs of the

retention policy. Best practices for auditable systens require 3 geo-dispered copies for for
regul atory conpliance

with FIPS/ NI ST, etc.

Ot her comment s:
d obal FS data dominates - the cluster and configuration information is of little use w thout the
globalfs and it
is quite sinple to include the cluster and other data within the globalfs with the other data
i ncl uded.
Starting sinple:
It is unclear what the filesystemusage and activity patterns will be, and the activity and
patterns are subject
to frequent change over tine, requiring adaptation of the strategy. This suggests that a sinple
strategy such as
a rolling stack NNway full-dunp, where N >= 4 (covers an extra day on 3-day weekend).
Moni t ori ng:
Assuming that there is nonitoring of both the cluster and backup system does not necessarily
guarantee the integrity of
t he backups. A corrupted filesystemcan still be dunped with the cluster and the backup system
presenting as nornal
in the nonitoring system
Speci al data:
Sonme applications can create files that are problematic for file-level backup systens. These
include files with
"hol es" of unallocated bl ocks (databases), device inodes (docker, vmis etc.), vfs binds, and hard-
I'i nks. These
can be translated in unrestorable ways by filesystemlevel prograns and various tools handle
these with varying degrees
of "restorability".

G uster backup options:
G uster currently has no native "dunp" programthat can export restorable contents of the filesystem

such as xfs-dunp or dunpe2fs. The filesystem can be backed up with traditional file archiving and
di stribution tools:
rdist - originally developed as a mirroring tool for content distribution mrroring. I't has

options for increnental
transfers using bl ock hash differencing, optional renoved file tracking, server node, ssh

tunnel transfer, retries, and perforns decently on nost special files |ike device inodes and |inks. It
is widely used but not frequently as a backup sol ution.
tar/cpio/etc. - sinple archiving tools that have been around a long tine.

G uster Ceo-replication - Geo-replication allows nultiple gluster clusters to operate in a
replication-tree within a

mast er - sl ave configuration. After peering setup to the slave cluster at the renote-site,
replication is managed via the command-1ine to synchronize geo-replicas and to restore data froma sl ave
to a master. Ceo replication can operate security with TLS, and synchroi zes at the gluster brick-Ievel

for efficiency.
BareOS with gluster - BareOS is a descendant of the backul a backup systemoriginally devel oped as
a client-server backup
solution for various operating systems. The latest gluster (v3.8) and BareGS (v16.2) have
the capability to scrape
and backup a gluster filesystemw thin the BareGOS infrastructure which can manage backup
schedul es, data storage, restores, etc. BareOS is highly custom zable for many purposes.

Desi gn Recommendat i on:

Use geo-replication as it is native to gluster and likely to be nost efficient. File-level tools
are easy but may have unpredictable results. BareOS/ backula m ght be preferred in scenario where such
infrastructure was in place, but it's not.

In the long-run, if we come to be nanagi ng backups of data across many systens, this woul d make sense.

Pl an:
1. Bring up peer glusters on SDSC
2. Configure geo-replication for globalfs with slaves on SDSC
3. Test replication with sone test data
4. Repeat for TACC
5. Setup alternating schedule to replate nightly to SDSC TACC al ternati ng

1. Dunp cluster config, etcd backup to /var/glfs/global/backup
2. Start geo-replicate
3. Wait for replication checkpoint status
4. Turn replication off
6. Docunent replication perfornance
1. Create large-sized file stucture
2. Replicate and tine to slaves - baseline replication throughput

Performance Testing

®* GFS
® ‘“jassist” redux
© est. per-user quotas?
© what do we need on day 1

Open Questions

® How many beta users?
© what is the workload?
® By what performance metrics do we judge pass/fail?
® How do we learn our limits?
O Capacity planning / monitoring
® What happens when we need to:
© add GFS bricks?
© add kubernetes nodes?
® What constitutes a failure?
© Dead node

Capacity Planning

	Monitoring, Backup/Disaster Recovery, Performance Testing, Capacity Planning

