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Abstract— Assigning global unique persistent identifiers 
(GUPIs) to datasets has the goal of improving their 
accessibility and simplifying how they are referenced and 
reused. However, as repositories receive more and complex 
data, attesting for the identity of datasets attached to persistent 
identifiers over time is becoming more challenging. This is due 
to the nature of scientific research data, which is generated 
through distributed research practices and evolves across 
different computational environments. This work presents a 
robust, automated computational service for data content 
comparison as a valuable addition to assigning, managing, and 
tracking persistent identifiers. We operationalized the 
functions of the service within the archival space by linking 
data provenance and identity to authenticity. The need for 
such service is shown through three genomics data use cases in 
which the results aided curators establishing the identity of 
datasets and inferring issues of provenance. We describe the 
system’s design, implementation and performance, and report 
on lessons learned.  
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I.  INTRODUCTION 
Data driven research methods in the Sciences and the 

Humanities result in many new discoveries and in growing 
amounts of corresponding data. To preserve and make the 
data permanently accessible, most online repositories are 
providing curation services. which include granting global 
unique permanent identifiers (GUPIs) to the published 
datasets. However, while GUPIs are perceived as a synonym 
of permanence, many challenges remain in their 
implementation and maintenance [1]. Among those are: 
making decisions about assigning identifiers, attesting for the 
data identity over time, and continuously managing the 
provenance metadata needed for the data to be reused.  

In today’s digital environment such challenges are 
exacerbated by the distributed nature of scientific data 
practices and the growing sizes of the data. For example, 
repositories that assign GUPIs demand significant data 
preparation and manual description prior to publication, 
which can be daunting to accomplish for data curators. More 
often than not, such descriptions produce enough 
information for purposes of data citation but are insufficient 
for data reuse. As datasets are created and modified during 
the research process, they may result in multiple components 
and versions. Some data versions and components are 
submitted to canonical repositories, while others may be 
stored elsewhere and continue to be actively used by the 

research team, deriving over time in new related data 
publications. Therefore, data from one project may exist in 
different formats, versions, and stages of completion, and 
while some transformations are documented, others may 
seem too trivial and thus easily ignored. All of this 
contributes to poor provenance information and failure to 
record post publication events and consequently the need to 
reaffirm the identity of a dataset in context with the related 
one.  

Traditionally, problems such as the ones described above 
have been the concern of archival science and can be better 
understood in that space. In this project we operationalize the 
problems through the archival concepts of provenance and 
identity, and relate those to data authenticity. Provenance is 
understood as the processes through which data is created 
and modified over time, and identity as the possibility to 
distinguish data from other data through its content, its 
relations to other data, and contextual information recorded 
as metadata. However, when discussing digital data, there 
are differences with the notion of authentic archival records, 
which are preserved in an archive with all the information 
that attests to their authenticity. Those differences are related 
to how data is conceptualized by their creators and users. In 
the midst of often messy and distributed data practices, as 
new versions, copies, and derivatives of a dataset emerge, 
and where data is auto-published by its creators, reused 
beyond publication, and may be published again in different 
repositories and for different reasons, authenticity has to be 
continuously managed to clarify the roles and relations of the 
data.  

In this environment, a service that can identify changes, 
connections, and differences between datasets is useful to 
maintain a record of the dataset’s authenticity. And yet, 
although archivists have long defined the characteristics of 
authentic records, and those principles are gaining their way 
into the realm of data curation, they have not been developed 
into automated and scalable methods. 

In particular, the biology community has expressed the 
need to better understand the use of identifiers across the 
research lifecycle for purposes of tracking provenance, and 
for assembling large and dispersed datasets [2]. As part of 
the Identifier Services (IDS) research project [3], we are 
investigating a content-based large data comparison 
framework. The IDS project is designed to track the 
evolution, integrity, and identity of biology datasets in 
relation to assigning, maintaining, and updating GUPIs. 
Through the content based comparison function, which is 
one of the project’s micro-services, the differences between 
related data are computed. This function is relevant for very 
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large datasets such as sequencing files, whose contents 
cannot be manually compared. 

We built a framework for genomics data comparison and 
applied it to three exemplary use cases. The service functions 
within IDS, and is external to the repositories where data are 
located. It uses AGAVE API [4] to transfer data to the high 
performance computing (HPC) resource Wrangler [5] where 
large-scale comparisons are performed. Through the results, 
curators can infer the role of the compared files and settle 
provenance and identity issues. Comparisons can be repeated 
over time to continuously manage the authenticity of 
evolving data.  

II. BACKGROUND AND REALTED WORK 
The archival construct of authenticity includes context, 

provenance, content, and integrity among the elements 
considered to attest that a record is what it claims to be over 
time and space. Clifford Lynch explains that determining 
authenticity in the digital environment needs to be managed 
over time, and that there are both mechanical and conceptual 
implications [6]. Mechanically, establishing authenticity for 
a digital object may involve verifying the integrity of the 
bits, its metadata, and its identifiers. Conceptually, an 
intelligent system could help determine and document series 
of related assertions about a digital object in connection to its 
provenance, versions, and derivatives [6].  

Data authenticity cross references with data identity. 
Wynholds states that data identity is constructed through a 
combination of elements that aim to establish that an object 
is “definable and recognizable” from other objects [1]. The 
author points that in the current scientific environment data 
is an “unruly and poorly bounded object,” making it difficult 
to identify its uniqueness. This relates to the presence of 
multiple versions and or components of a dataset, which may 
be stored in different places at different times, and in many 
cases bearing different identifiers. Once an identical, similar, 
or related object appears, the identity of the data of interest 
can be challenged, all of which has an impact on the policies 
and tools surrounding the assignment of GUPIs.  

However, repositories that are long-term custodians of 
data and grant unique identifiers have poor or no 
mechanisms to continuously assess identity beyond 
validating the integrity of the data they hold [3].  Most of 
today’s repositories are silos, and once an object is 
deposited, tracking differences and associations between data 
versions and or related components that are outside of the 
repository is either not practiced or is done manually by 
updating the metadata record. This landscape suggests the 
need for computational solutions to track, validate, and 
document data identity in a continuum and at scale.  

A common approach used to verify and compare files in 
data repositories is through a hash function [7], [8]. A hash 
value is computed at the file bit level and, if two files being 
compared are identical, their hash value will match. While 
IDS allows conducting hash analysis for data integrity 
purposes, this is not sufficient to aid establishing identity. 
The method is not content-aware therefore, if the formats of 
the files to be compared are different, the hash value will be 

different even if the content is identical. Furthermore, this 
approach cannot provide additional information regarding 
the nature of the differences between files, leaving users 
with limited options to make inferences about provenance.  

For the biological sequence formats, which are at center 
of our investigation, a number of tools are available to 
provide more detailed comparisons [9], [10]. Those, 
however, are not ideal for establishing identity at the scale 
required. For example, the popular sequence comparison 
tool, BLAST [9] indexes one of the collections and then 
searches each record in the other collection against the index. 
This process is computationally expensive and generates 
extra information that is not needed for our purposes. 

We introduce a powerful content based comparison 
framework. The comparison functions within the IDS 
application (https://identifierservices.org), where users can 
conduct different and complimentary data integrity and 
identity analyses to decide on the nature of the similarities 
and differences between related data. 

III. SCALABLE COMPARISON FRAMEWORK  
A. Workflow Overview  

Figure 1. Workflow for comparing two collections. 
 
Figure 1 shows an overview of the workflow for comparing  
two datasets. Here, a collection refers to a set of records as 
the analytic unit that will be compared. The first step of the 
workflow is collections analysis to determine the types of 

Records comparison: compare records for 
each pair 

Collection A Collection B 

Collections analysis: determine records in 
each collection  

Records list in A Records list in B 

Records analysis: determine best pairs of 
records for comparison  

Pairs of records from each 
collection 

Comparison report 
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records contained in the collections to be compared. Here, 
record types are inferred through available parsers that 
identify file formats and structures found in the genomics 
space. Note that a collection may have more than one type of 
record, as it may be composed by more than one file format.  
Once the parsers automatically identify the type of records to 
be compared the outputs are two lists, one for each 
collection, in which each record is represented as a <key, 
value> pair. The key is a unique identifier for the values of 
that pair within the collection.  Next the records analysis 
step creates a list of record pairs from each collection for 
comparison. The identifiers are extracted for each file format 
and used as the key for each record; the value of each record 
is stored as a string object. During records comparison, the 
method of comparison between two records is selected based 
on the record types, and a summary report is created to show 
the differences between the collections.  

 
B. Comparison algorithm and implementation  

The basic steps of the comparison algorithm are outlined 
below.  

 
The algorithm sorts the lists of records based on their 

unique identifiers first and the comparison is carried out as 
linear traversal on both lists. The computational complexity 
is O (n* log n), where n is the maximum number of records 
in each collection. This algorithm can also be parallelized on 
HPC resources for scalability and efficiency. Different 
distance functions can be used in step 3 to compare two 
records, and appropriate distance functions can be used for 
different record types. The comparison algorithm was 
designed to maximize comparison efficiency. We 
implemented standard string distance functions including: 
Hamming distance, prefix distance, suffix distance, and edit 
distance [11]. The collection analysis step used the 
BioPython package to recognize a variety of biological file 
formats such as: FASTA for gene sequences, FASTQ for 
short reads, and GFF for gene variation [12]. BioPython is a 
popular tool used in Bioinformatics and additional parsers 
can be added if needed. To handle large amounts of records, 
both the records analysis and the records comparison steps 
were implemented using the Spark processing framework 
[13], which can utilize parallel computing resources when 
available.  

C. Results reporting  
The results are categorized in four groups: 1) both keys 

and values match for both collections; 2) only keys match in 
both collections; 3) and 4) keys cannot be matched from one 
collection to the other (A to B, and B to A). 

An important goal of this research is to convey 
information for users to understand the nature of the 
discrepancies between collections. From a clear 
understanding curators can decide how to assign or relate 
identifiers so that data can be recognized unequivocally in 
the midst of copies and versions. Moreover, they can infer 
the reasons of such differences and add provenance 
information to the research record. However, there are 
challenges reporting the results of large scale comparisons. 
For example, while all the differences between two 
collections can be recorded for users to review, this is 
neither useful nor intelligible, as the amount of differences 
identified by the comparison algorithm can be of the same 
order of the records being compared. Abstracting and 
representing comparison results in ways that allow 
understanding and decision-making is crucial to the 
usability of this computational service. After consulting 
with biologists, and curators about reporting requirements, 
the comparison report consists of three layers of 
information. The first layer is an overall statistical summary 
that includes the following information:  
• Number of records identified and compared for each 

collection. 
• Number of records successfully matched through their 

keys (id) between collections.  
• Numbers of records that only exist in one of the 

collections (A or B).  
• Histogram of the distribution scores between matched 

records.  
The score between two records is normalized as a range 

between 0 and 1, with a score of 1 indicating identical 
records. The histogram is created using the scores of all 
non-identical pairs of records aggregated by every 10 
percentiles.  

The second layer of information is intended to help 
users understand the differences between collections. It 
includes examples of pairs of records randomly sampled 
from each collection, as well as records that exist only in 
one collection. The examples show the full record including 
the key value (id) and the record content.  

Although it may be too long for a user to inspect, the 
third layer is a complete copy of the comparison results. The 
results are organized based on matching status, i.e. identical 
records, non-identical records, and records missing in one of 
the collections. To reduce storage needs, only the unique 
identifier of each record is stored. This document functions 
as a registry and can be used to validate the comparison if 
the process has to be reproduced.  

IV. USE CASES AND LESSONS LEARNED 
Using the computational framework, we completed three 

use cases that represent different typical scenarios found in 
genomics data collections. We present each use case, the 
comparison results, and the decisions made by curators and 
researchers about the data identity. 

1. Convert list of records as (identifier/key, value) pairs.  
2. The records are sorted based on the identifiers.  
3. Start with a, b as the pointer to the head of list A, B 

respectively according to a score function, 
        If score(a, b)<=0, record results and move a forward,  
        If score(a, b) >0, record results and move b forward.  
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A. Use case 1: Copies of a dataset are stored in different 
repositories with metadata and content discrepancies. 
This case corresponds to a rice genomic variations 

dataset obtained from the analysis of high throughput 
sequencing (HTS) data for: 94 varieties of Oryza Sativa, and 
10 wild relatives from Oryza Rufipogon and Oryza Nivara 
[14]. Details of the research and data outcomes can be found 
in [15]. SNPs (single nucleotide polymorphisms) and small 
indels (insertions and deletions) for the 104 varieties are 
provided as a single variance call file (VCF), whereas 
predictions of copy number variation (CNVs), large indels, 
and inversions are provided as one file per sample in genetic 
frequency file format (GFF). Biologists studying the genetic 
variances in plants frequently reference this dataset. Due to 
its popularity, multiple copies of the dataset exist in different 
repositories, two of which are the CyVerse Data Commons 
[16] and Dryad [17]. Both the metadata fields and the 
content values stored in the two repositories have noticeable 
differences. To view the Dryad metadata record go to: 
doi:10.5061/dryad.8hg32/1. To view the Cyverse metadata 
record go to: doi:10.7946/P21595. 1  

 
Figure 2 Metadata record for the Rice Genome Variation dataset in the 

Cyverse Data Commons repository 
 
Each repository uses different fields to describe the 

same dataset, and the level of details entered in the 
corresponding fields are different as shown in Figure 2 and 
3. Furthermore, the way in which data is delivered in both 
locations, and the functionalities of each repository platform 

                                                             
1 The metadata in the Cyverse record has been edited to reflect the 
relationship with the dataset published in Dryad. However, the metadata 
record in Dryad was not edited to reflect the relationship. 

differ. Dryad, an established data repository, which 
integrates data to journal publications, delivers the dataset as 
one compressed file. Instead, CyVerse provides access to all 
the files, and offers a direct connection to HPC resources to 
facilitate data analysis. The differences between both 
platforms explain why the researcher team wants to offer 
both access points to their data. Both Dryad and CyVerse 
assigned GUPIs in the form of DOIs to each dataset. As a 
result, it was not straightforward for users to identify both 
datasets as being the same work. To clarify differences and 
similarities between the datasets and to complete the 
metadata record, the data curator at CyVerse needed more 
information. 

We proceeded to compare the data in our framework by 
integrating the parser from the BioPython package to extract 
the list of records from each collection. The framework 
promptly verified that the two collections are exactly the 
same. Learning about the results, the data curator at CyVerse 
clarified the connection between the datasets by relating the 
Dryad identifier as an identical dataset in the metadata of the 
CyVerse identifier (See full metadata record at 
http://ezid.cdlib.org/id/doi:10.7946/P21595). In this case, 
both datasets are authentic, but it was important to clarify the 
roles and relationships between them. 

  
Figure 3 Metadata record for the for Rice Genome Variation in Dryad 
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B. Use case 2: Two components of a dataset are published 
in different repositories and show differences.  
The second use case is a common scenario found in the 

process of publishing a dataset. A research group wants to 
publish a complete dataset resulting from the analysis of five 
different maize lines. The dataset includes the FASTQ files, 
the BAM files, and the 100BP tiles corresponding to the 
outcomes of the sequencing, alignment, and analyses of 
methylation processes of each maize line. Component parts 
of this dataset, the raw sequencing files in FASTQ format, 
are already published in the canonical Sequence Read 
Archive (SRA) repository which accepts only sequencing 
files  [18]. In turn, the working copy of the entire dataset is 
stored at the Texas Advanced Computing Center (TACC) for 
active analysis, and the team wants to make it public for 
others to reuse all the component parts. They also want to 
link the complete set to journal publications in which they 
use more than the sequencing files.  

Before assigning a GUPI and publishing the complete 
dataset, the curators wanted to know if the raw sequencing 
files stored at TACC were identical to those already 
published in SRA. After conducting the content based 
comparison, the results showed that despite the researchers’ 
belief, the FASTQ files stored in the SRA repository were 
different from those stored at TACC. The researchers needed 
to see the results and evaluate the nature of the discrepancies.  
 
Table 1. Example of comparison summary between the researchers working 
copy and the archived data with SRA 

1. Records matched in both collections 165,993,413 

2. Identical records in both collections 23,222,181 

3. Different records in both collections 142,771,232 

4. Records found only in A 0 

5. Records found only in B 1,769,469 

                        
Figure 4. Set diagram of comparisons summary in Table 1 

 
Table 1 shows that the raw sequencing files in the 

complete set at TACC are different from those in the SRA 
repository. Given the extensive amount of records that were 
compared, we offered the results as percentages of 
differences between both collections. Along with the results, 
we presented records as examples of those differences. The 
working copy of raw sequencing file (set A) has 165,993,413 
sequences, and the copy from SRA (set B) has 167,762,882 
sequences. All IDs in A can be found in B and within these 
common IDs there are 23,222,181 common sequences 
shown as ‘2’ in Figure 4.  Observing the results, the research 
team concluded that the percentage of difference between 

both collections was not significant. Importantly, by looking 
at the sample records offered as the second layer of 
information, the team understood the nature of the 
discrepancies. They realized that the data stored at TACC 
had been processed by a common technique known as 
adaptive trimming, and that the untrimmed raw files were 
stored at SRA. Still, researchers considered that both 
trimmed and un-trimmed collections could be considered the 
same “work”. They concluded that a DOI could be assigned 
to the complete dataset at TACC. The curator will relate the 
SRA identifier in the DOI DataCite metadata to clarify that 
both are authentic, what differences they have, and the 
reason why there are two datasets (complete and component) 
published.  

C. Use case 3: Two datasets with similar metadata show 
siginificant content differences. 
The third use case involves two datasets that share almost 

the same metadata record but the content of the data is 
significantly different. We identified two datasets, DDEV 
[19] and IFCJ [20] in the 1K plant genome project  [21]. For 
both datasets, 12 out of 14 metadata fields available through 
the web API are identical.  The differences are in the “RNA 
extractor” and “note” fields (Figure 5).  

 

  
Figure 5. Screenshots of the metadata records of the two datasets at the 1K 
plant genome website.  

Despite the high similarity among the metadata records, 
the comparison results indicated that the datasets are 
different. The number of records between them differ; one 
dataset has 13,350,236 records and the other one 18,500,835. 
Figure 6 below shows the score distribution of the 
comparison results.  
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Figure 6. Distribution of matching scores between two datasets from the 
1K Plant Genome Project.   

Figure 6 shows that most records in both datasets are 
different. However, we also notice a peak of scores between 
0.1 and 0.2. In this case we used the prefix-matching 
algorithm as a distance function. The score distribution 
indicates that a relatively large quantity of record pairs match 
in the first 20% segment of the records being compared   

Previously to the comparison, the researchers of the 1K 
Plant Genome Project mentioned that the differences 
between the two datasets could be due to the contamination 
of one of the plant samples, but they still wanted to publish 
both datasets. After observing the results, they suggested that 
the pair of matches during the first 20% segment of the 
records could be due to the use of the same sequencing 
primer in both datasets. Additionally, they did not expect to 
find such similarity between both collections, and are 
interested in further investigating the results. The comparison 
results improved their knowledge about the data provenance 
and allowed making further curatorial decisions. Concluding 
that the existing metadata is insufficient for users to 
determine the differences and thus the identity of each 
dataset, the curators indicated that each published dataset 
needs its own unique identifier as well as clarifications about 
their provenance in the metadata record. Again, the 
researchers decided that they wanted to maintain both 
datasets publicly available for users to explore.  

D. Performance and scalablitiy  
As datasets become increasingly large, the content-

based comparisons can be very computationally expensive. 
Hence, an important requirement of content-based data 
compassion is that it is feasible and scalable. We conducted 
tests to determine the scalability and performance of the 
framework. 

All the computations were conducted in the data 
intensive system Wrangler [5]. Figure 7 shows the execution 
time involved in comparing two sequencing files in use case 
3. The three main steps during the comparsion shown in 
Figure 7 are: 1) time spent reading the data, 2) time spent 
matching the records, and 3) computing the scores between 
pairs of records. The two files compared are ~3GB each, 
with 13,350,236 and 18,500,835 records respectivly.  

To evaluate performance we conducted the 
comparisons using different number of nodes (Figure 7). 
The blue columns show job runs using four nodes and the 
red ones show job runs using eight nodes.  

 

 
 
Figure 7. Performance and scalability of the main content-based 
comparison steps.  

Our implementation performed the comparsion in under 
two mintues. We observed that the perforamce increased 
only 1/3rd so it is not linearly correlated to the number of 
nodes used. The reason for this is that the comparsion is 
largely dominated by the read data operation, which is less 
scalable, regardless of the number of nodes used. If the data 
increases, the calculation can be paralelized even further to 
improve scalability. In addition we estimated that running 
the comparisons using the existing sequence comparison 
tool, Blast would takes hours instead of minutes.  

V. CONCLUSIONS  
In distributed research and computational environments, as 
copies and versions of a dataset are generated, the identity 
and provenance of data has to be managed over time to 
continuously support a dataset’s authenticity in relation to 
other objects that exist and evolve. In the context of the IDS 
research project, we created and tested a content-based 
comparison framework to aid curators determine the 
uniqueness of a dataset. The three use cases described in this 
paper are common scenarios found in genomics data 
management. In all cases, the metadata alone did not allow 
establishing their unique identity, the researchers were not 
quite sure of what had changed in the data, and assigning 
identifiers was not clear. Conducting content-based 
comparison between the datasets was useful to make 
identity decisions, provision GUPIs, and facilitate 
documenting provenance. The way in which the comparison 
results are presented help curators understand the reasons 
for the differences or similarities between the compared 
data. The work ahead involves generalizing the framework 
to other data types . 
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