GWD-I

Stephen M Hanson (IBM)

OGF DFDL WG

July 10 2012

Data Format Description Language (DFDL) v1.0

Action 140

(Internal Committee Working Document)

 SHAPE

Status of This Document

This working draft document contains the latest WG thoughts on action 140. Distribution is limited to core WG members.

Copyright Notice

Copyright © Open Grid Forum (2012). All Rights Reserved.

Abstract

Table of Contents

[image: image2]
1.
Introduction
4
2.
Empty, Missing and Defaults
5
3.
Arrays
8
4.
Separator Policy
11
5.
Appendix A.
13
6.
Authors and Contributors
15
7.
Intellectual Property Statement
16
8.
Disclaimer
17
9.
Full Copyright Notice
18
10.
References
19

Version Control

	Version
	Author
	Date

	Created v001
	Steve
	Sep 8 2011

	Updated to v002
	Mike
	Oct 2011

	Updated to v003
	Steve
	Oct 12 2011

	Updated to v004
	Steve
	Oct 14 2011

	Updated to v005
	Steve
	Oct 18 2011

	006 – includes some comments by Tim K, also added section/table to clarify separatorPolicy.
	Mike
	Oct 19 2011

	007 – comments
	Steve H.
	

	008 – updated separator policy table to reflect discussion on call today.
	Mike
	Nov 2, 2011

	009 – updated language around nil and empty-processing for strings.

Empty/Default processing requires a properly delimited empty string according to emptyValueDelimiterPolicy.

Also, when %ES is a nilValue, unparsing you only get ES if it is the first nilValue.
	Mike
	Nov 8, 2011

	010- improved separatorSuppressionPolicy table and surrounding wording. Added clarifications to algorithm having to do with emptyValueDelimiterPolicy and use of the 'empty' concept to be explicit about when we mean ES and when we mean a formally 'empty' rep as defined by emptyValueDelimiterPolicy.
	Mike
	Nov 30, 2011

	011 – further updates to fold comments into the text
	Steve
	Dec 13, 2011

	012 – update separator suppression tables, correct edits from 011
	Steve
	Mar 2, 2012

	013 – consolidate, reorder and condense information
	Steve
	May 21, 2012

	014 – further refinements
	Steve
	June 12, 2012

	015 – review comments
	Steve
	July 10, 2012

1. Introduction

Action 140 was initially raised to address shortcomings in the DFDL 1.0 specification in the area of ‘missing’ elements and default handling, particularly on parsing. The investigation has been wide ranging uncovered further issues about repeating elements, separator suppression, etc.

This document is used to track where the WG has got to in resolving action 140.

The expectation is that action 140 will result in several technical fixes to the DFDL 1.0 specification, which will be recorded as such in the DFDL 1.0 Errata document published on Grid Forge. As this happens, information will be removed from this document and formalised as errata in the DFDL 1.0 Errata document. Thus far we have:
3.10. Allow complex elements to be nillable

3.11. Add occursCountKind ‘implicit’
3.14. Revise separatorPolicy name and enums

2. Empty, Missing and Defaults

During unparsing, the role of defaults is to ensure that the data stream that is generated is correct according to the schema, ie, the unparser does not generate something that can not be parsed. This is in contrast to the (currently specified) role of defaults on parsing, which is to tolerate invalid data streams and fix up the resultant infoset to make it correct. It was questioned whether this was actually needed. Why are we trying to handle missing required elements in a data stream, could we just issue a processing error? If an element can be missing from the data stream, it should be modelled as optional. We shall proceed on that assumption.

For elements, XML Schema does not use defaults to correct missing elements, it uses defaults to fill in values for elements that are present but have empty content. We shall use this principle for DFDL, as the main use case for using defaults on parsing is supplying a value for a required empty element (the CSV adjacent separator example). In order for this to work, we must be able to distinguish clearly between an empty element and a missing element when parsing.

Some definitions are needed to cover the range of representations that are possible in the data stream for an element.

Nil representation
An element has a nil representation if the element is nillable and the SimpleContent or ComplexContent region matches one of the nil value criteria as expressed by nilKind and nilValue, and Initiator and Terminator regions are conformant with nilValueDelimiterPolicy. (If Initiator or Terminator are non-conformant with nilValueDelimiterPolicy, it is not a processing error and the representation is not nil).
LeadingAlignment, TrailingAlignment, PrefixLength regions may be present.

Empty representation

An element has an empty representation if the element does not have the nil representation and has a SimpleContent or ComplexContent region of length zero in the data stream, and Initiator and Terminator regions are in accordance with emptyValueDelimiterPolicy. (If Initiator or Terminator are non-conformant with emptyValueDelimiterPolicy, it is not a processing error and the representation is not empty). LeadingAlignment, TrailingAlignment, PrefixLength regions may be present.
Absent representation

An element has an absent representation if the element does not have the nil or empty representations, and has an entire SimpleElement or ComplexElement
 region of length zero in the data stream. Initiator, Terminator, LeadingAlignment, TrailingAlignment, PrefixLength regions must not be present.

Example of the absent representation. During unparsing, if an optional element is missing from the infoset then nothing is output. However if a separator of an enclosing structure is subsequently output as the immediate next thing, then a subsequent parse of the element may return a representation of length zero (this is dependent on lengthKind). If this happens, and this length zero representation does not conform to either the nil representation or the empty representation. But if it does not conform to either, we want it to behave as if it was ‘missing’.

Normal representation

An element has a normal representation if the element does not have the nil representation or the empty representation or the absent representation.
Missing

When parsing, an element is missing if it does not have any of the above representations, or it has the absent representation. When unparsing, an element is missing if there is nothing in the infoset. When a required element is missing it is a processing error (both parsing and unparsing).
When an optional element is missing, nothing is added to the Infoset when parsing, and nothing is output to the data stream when unparsing.
Examples

The following examples illustrate missing and empty.

<xs:sequence dfdl:separator="," dfdl:terminator="@"
 dfdl:separatorSuppressionPolicy="trailingEmpty">

<xs:element name="A" type="xs:string"

 dfdl:lengthKind="delimited"/>

<xs:element name="B" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited"/>

<xs:element name="C" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited"/>

</xs:sequence>

In data stream aaa,@ element B has the empty representation, and element C does not have a representation so is missing.

<xs:sequence dfdl:separator=","

 dfdl:separatorSuppressionPolicy="anyEmpty">

<xs:element name="A" type="xs:string"

 dfdl:lengthKind="delimited" dfdl:initiator="A:"
 dfdl:emptyValueDelimiterPolicy=initiator”/>

<xs:element name="B" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited" dfdl:initiator="B:"

 dfdl:emptyValueDelimiterPolicy=”initiator”/>

<xs:element name="C" type="xs:string" minOccurs="0"

 dfdl:lengthKind="delimited" dfdl:initiator="C:"

 dfdl:emptyValueDelimiterPolicy=initiator”/>

</xs:sequence>

In data stream A:aaaa,C:cccc element B does not have a representation so is missing.
In data stream A:aaaa,B:,C:cccc element B has the empty representation.
In the data stream A:aaaa,,C:cccc element B has the absent representation so is missing.
Note that round tripping is not guaranteed. An empty string in the Infoset will be output as the empty representation, but if the element is nillable and empty string (%ES;) is a nil value and nilValueDelimiterPolicy is the same as emptyValueDelimiterPolicy, then when parsed the Infoset will contain nil.

Establishing representation when parsing
If a processing error or schema definition error occurs either when parsing a simple element, or when parsing a complex element and a processing error is not suppressed by an enclosed point of uncertainty, then the element does not have a representation (none of normal, nil, empty or absent).
Assuming no processing error, the next thing is to see if the element’s content region has zero length. This is lengthKind dependent.

· explicit => length is zero (either fixed or from expression evaluation)

· prefixed => prefix length is zero

· implicit (simple) => length is zero from type facets
· implicit (complex) => length is zero upon return from descending into children.

· delimited => scanning returns zero length

· pattern => pattern returns zero length match

· endOfParent => returns zero length
For a simple element, length plus initiator and terminator enables the representation to be established.

For a complex element, length plus initiator and terminator enables the nil representation to be established
, but all other representations can only be determined by descending into the children. If the descent returns successfully (ie, no unhandled processing error occurs) then the other representations may be established.
·
·
·
·
·
·

Note that the DFDL parser shall not descend into a complex element for which it has been established there is no representation. Otherwise this could give rise to misleading error messages where the parser reported that required children were missing. (This is consistent with XML Schema validation, where if a required element is missing, it gets reported as such, and there is nothing reported about its children).

For the purposes of establishing representation, a local sequence or choice effectively has lengthKind ‘implicit’, except that delimiting regime of parent is retained.

Required element

The specification currently has the concept of 'Required in a required context'. This was added so that the DFDL parser did not cause speculation to succeed by the application of defaults making a bad data stream good. But as we are now saying that the parser does not apply defaults for missing elements, then I think this concept does not need to be stated explicitly.

That means the definition of required element simplifies to:

· A scalar element

· An element of a fixed occurrence array

· An element of a variable occurrence array if its index is less than or equal to minOccurs.

This definition is independent of occursCountKind.

Anything else is an optional element.

On parsing, a required element must produce a value in the Infoset otherwise it is a processing error.
On unparsing, a required element must produce a value in the augmented Infoset otherwise it is a processing error.
Default values when parsing
The DFDL parser shall only apply a default when a simple element has empty representation and is a required element. The default is added to the Infoset. For types other than xs:string and xs:hexBinary, it is a processing error if an empty required element does not have a default. For xs:string and xs:hexBinary, there is a variation on this rule (see later).

The DFDL parser shall not apply defaults in any other circumstance.
Default values when unparsing
The DFDL unparser shall only apply a default when:

· A simple element is missing from the Infoset and is a required element. The default is added to the augmented Infoset. It is a processing error if a missing required element does not have a default.
· A complex element is missing from the Infoset and is a required element. The unparser descends into the complex element. It is a processing error if a required child element does not have a default (recursively).
The DFDL unparser shall not apply defaults in any other circumstance.

Empty and strings
When an element is of type xs:string or xs:hexBinary then is found to have the empty representation when parsing:
1. When required element, if there is a default value specified then the default value is added to the Infoset, else empty string is added to the Infoset

2. When optional element, if dfdl:emptyValueDelimiterPolicy is not ‘none’
 then empty string is added to the Infoset, otherwise nothing is added to the Infoset
This behaviour satisfies the majority of common scenarios without the need to introduce an extra property that says what to do
.

Grammar
The different representations may be reflected in the grammar. Changes in this colour.
	Productions

	Document = UnicodeByteOrderMark Element

	Element = SimpleElement | ComplexElement | MissingRepresentation
SimpleElement = ElementLeftFraming SimpleContent RightFraming
ComplexElement = ElementLeftFraming ComplexContent ElementUnused RightFraming

ElementLeftFraming = LeftFraming PrefixLength

PrefixLength = SimpleContent | PrefixPrefixLength SimpleContent

PrefixPrefixLength = SimpleContent

	LeftFraming = LeadingAlignment Initiator
RightFraming = Terminator TrailingAlignment

LeadingAlignment = LeadingSkip AlignmentFill
TrailingAlignment = TrailingSkip

	SimpleContent = NilCharRepresentation | EmptyRepresentation |
 [LeftPadding [SimpleRepresentation | NilRepresentation] RightPadOrFill]
ComplexContent = Sequence | Choice | NilRepresentation | EmptyRepresentation

	Sequence = LeftFraming SequenceContent RightFraming
SequenceContent = [PrefixSeparator EnclosedContent [Separator EnclosedContent]* PostfixSeparator

Choice = LeftFraming ChoiceContent RightFraming
ChoiceContent = [EnclosedContent] ChoiceUnused

EnclosedContent = [Element | Array | Sequence | Group]

	Array = [Element [Separator Element]* [Separator StopValue]]

StopValue = SimpleElement

Notes:
· For a simple element, if nilKind is ‘literalCharacter’ the nil comparison occurs before trimming when parsing, otherwise it occurs after trimming. See errata 2.8.

3. Arrays

The spec does not fully define the behaviour for the different occursKind enums. It is especially light on unparsing behaviour. We rectify that here.
Parsing

The full behaviour for parsing an array is:

If minOccurs = maxOccurs = 1

 Expect exactly 1 occurrence

 Processing error if this occurrence not found or defaulted

 Stop looking after this occurrence found or defaulted

occursCountKind is never examined and need not be defined
Else

Select occursCountKind
 Case: fixed

 Schema definition error if minOccurs <> maxOccurs

 Expect maxOccurs occurrences

 Processing error if minOccurs not found or defaulted

 Stop looking when maxOccurs found

 Case: implicit

 Expect up to maxOccurs

 Processing error if minOccurs occurrences not found or defaulted

Stop looking if > minOccurs occurrences found and known not to exist occurs for an occurrence
 Stop looking if and when maxOccurs occurrences found (if not

 unbounded)

 Case: parsed

 Expect any number of occurrences

 Processing error if minOccurs occurrences not found or defaulted

Parse as many occurrences as possible until known not to exist occurs for an occurrence

 maxOccurs only used when validating

 Case: expression

 Evaluate occursCount to give number of occurrences in the data
 Processing error if occursCount less than minOccurs

 Expect occursCount occurrences
 Processing error if minOccurs occurrences not found or defaulted

 Processing error if occursCount occurrences not found

 Stop looking when occursCount occurrences found

 maxOccurs only used when validating

 Case: stopValue

 Expect any number of occurrences

 Processing error if minOccurs occurrences not found or defaulted

 Parse occurrences until logical stop value is found

Stop value must be present even when zero occurrences

Stop value is not added to Infoset

 maxOccurs only used when validating

Endif

An occurrence is defined as being any allowable representation.

The DFDL parser defaults a required element (ie, up to and including minOccurs) when the occurrence in the data has empty representation. This is independent of occursCountKind.

Unparsing

The full behaviour for unparsing an array is:

If minOccurs = maxOccurs = 1

 Expect exactly one item in Infoset

Processing error if this item not in Infoset or defaulted

Processing error if more than 1 item in Infoset

occursCountKind is never examined and need not be defined
Else

Select occursCountKind
 Case: fixed

 Schema definition error if minOccurs <> maxOccurs

 Expect maxOccurs items in Infoset

 Processing error if minOccurs items not in Infoset or defaulted

 Processing error if more than maxOccurs items in Infoset

 Case: implicit

 Expect up to maxOccurs items in Infoset

 Processing error if minOccurs items not in Infoset or defaulted

 Processing error if more than maxOccurs items in Infoset

 Case: parsed, expression

 Expect any number of items in Infoset

 Processing error if minOccurs items not in Infoset or defaulted

 maxOccurs only used when validating

 Case: stopValue

 Expect any number of items in Infoset

 Processing error if minOccurs items not in Infoset or defaulted

 Logical stop value unparsed and output after last occurrence
 maxOccurs only used when validating

Endif

The DFDL unparser defaults required elements (ie, up to and including minOccurs) when an element is missing (ie, missing from the Infoset). This is independent of occursCountKind.

Array and sequence equivalence

The processing of an array is the same as the processing of an equivalent sequence of elements. The following two schemas have the same result (excluding name differences which are necessary due to UPA rules), assuming any set of identical DFDL element properties applied to them
.

<xs:sequence>

<xs:element name="a" type="string" minOccurs ="2" maxOccurs="4" />

</xs:sequence>

<xs:sequence>

<xs:element name="a1" type="string" />

<xs:element name="a2" type="string" />

<xs:element name="a3" type="string" minOccurs="0" />

<xs:element name="a4" type="string" minOccurs="0" />

</xs:sequence>

Notes:

· The number of elements in the equivalent sequence is maxOccurs, unless occursCountKind is 'expression' in which case the number is occursCount.

· When occursCountKind is 'stopValue' the sequence ends with an additional, hidden, scalar element with the same properties, to handle the stop value itself.

Forward progress requirement

It is a processing error when maxOccurs is ‘unbounded’ and the position in the data does not move during the parsing of an occurrence of the element including any associated separator. This is to prevent an infinite loop.
Empty occurrences
Each time round the array loop, length extraction properties for the element are re-evaluated. For certain lengthKinds it is therefore possible to have both empty and non-empty occurrences in the same array.

· explicit => expression may or may not evaluate to zero each time

· prefixed => prefix length may or may not evaluate to zero each time

· implicit (complex) => need to descend recursively each time to establish empty
· delimited => scanning may or may not return zero length each time

Consider parsing an array where empty occurrences are present in the data beyond minOccurs, and there are also later occurrences present with non-empty values.

If the indices of the data items in the array are significant and need to be preserved, then such a sparse array should be modelled using an element with nillable ‘true’, nilKind ‘literalValue’ and nilValue ‘%ES;’. All empty occurrences will then produce nil values in the Infoset, so the absolute positions of all occurrences are preserved. This works for both simple and complex elements (since errata 3.10).
If the indices of the data items in the array are not significant, then such a sparse array should be modelled using an element with nillable ‘false’. Although empty occurrences up to and including minOccurs will produce default values in the Infoset, empty occurrences beyond minOccurs will not create items in the Infoset, so the absolute position of any non-empty occurrences beyond minOccurs is not preserved. In other words, empty occurrences beyond minOccurs are effectively skipped.

This behaviour is independent of occursCountKind.

4. Separator Policy

In the tables below, it is important that the information is interpreted correctly. The separatorSuppressionPolicy goes on the sequence. The occursCountKind goes an element in that sequence.

The cells in the first table give the number of occurrences of element values that are expected in the data stream when parsing, for the combinations of separatorSuppressionPolicy and occursCountKind. The number of occurrences also depends whether maxOccurs is unbounded or not, and the position of the element in the sequence. The number of separators can be inferred from this, taking into account separatorPosition.
[image: image3.png]separatorSuppresionPolicy occursCountKind

Implicit

Potentialy Tra

fing (everythinglaste in sequence s Op, o last n sequence]

maxunbounded

maxbounded

parsed stopValue

staticallylast,or | noe llost,and
followedbyendof | NOTfolowed byendof
group aroup

RepDef(min) ~
Rep(max - min)

RepDef(min) [~
Rep(M < max -
min) ~
RepNonZero(1)]

trailing

traiing
RepDef(min) ~
Rep(M <= max -
min)
RepDefmin) ~
any Rep(M < INF) ~

StopValue

Not Potential

later Req stements

declaredin the Sequence)

maxunbounded

maxbounded

RepDef(min) ~
Rep(max - min)

RepDef(min) ~
Rep(M <= max -
min)

fixed

RepDef(min)

expression

Terminology used in the table:

RepDef(min) means minOccurs occurrences of any legal representation. These occurrences are required and occurrences of the empty representation will be defaulted. If permitted, minOccurs can be 0, in which case there are no occurrences.
Rep(M) means M occurrences of any legal representation. These occurrences are optional and occurrences of the empty representation will not be defaulted.

RepNonZero(N) means N occurrences of a legal representation where such a representation does not have zero-length. These occurrences are optional and occurrences of the empty representation will not be defaulted (empty representation only possible it does not have zero-length).

The cells in the second table give the number of occurrences of element values that are written to the data stream when unparsing, for the combinations of separatorSuppressionPolicy and occursCountKind. The number of occurrences also depends whether maxOccurs is unbounded or not, and the position of the element in the sequence. The number of separators can be inferred from this, taking into account separatorPosition.

[image: image4.png]occursCountKind

implicit

Potentialy Trailing leverything loste insequence i Op, o last i sequence] Not Potentialy Trailing [naslater Req elementsdeclared n th Sequence]

stopValue maxunbounded maxbounded fixed

Seaticalyast, o | not staticail
followedbyendof | NOTfollowed byend of
groun groun

separatorSuppresionPolicy
parsed

ias and maxunbounded maxbounded

ot stticatlylost staticallyase

unparse N elements ~
Unparse (maxOccurs — N) trailing
empty reps

unparse N elements ~
Unparse (maxOccurs —
N)trailing empty reps

unparse N
elements ~
stopValue

anyEm

expression

Terminology used in the table:
N is the number of elements in the augmented infoset so that includes any defaults.
5. Appendix A.

This appendix contains additional information, and may not be up-to-date when compared to the main sections.
Highlighting when empty strings are converted to values

1. If the item is of nillable type (see note on lengthKind=’delimited’). With nilKind=”literalValue” or “literalCharacter” (or nilKind=”logicalValue” but type=”xs:string”), then check for a nilValue of %ES; surrounded by appropriate delimiters as determined by nilValueDelimiterPolicy, initiator, and terminator. If so then this representation produces nil as the value. (Note that for nilKind literalValue or literalCharacter this is independent of simple/complex type.)

2. If the item is required.

1. when the type is simple

a. if the type is string or hexBinary, and there is no default value then the empty string is the value.

b. if the type is string, and there is a default value then the default value becomes the value.

c. if the type is some other simple type, with a default value specified then the default value becomes the value. (Note: unparsing will not produce the same output that is being parsed in this situation, as a value would be output, not empty string.)

d. if the type is some other simple type and there is no default value it is a processing error

2. when the type is complex, the complex type will be parsed recursively to obtain the infoset item.

3. If the item is optional

a. when the type is simple when the representation is empty (as defined by emptyValueDelimiterPolicy) produce nothing in the infoset.

b. when the type is complex then

a. when the representation is known in advance (that is, lengthKind is explicit, prefixed, delimited, pattern, endOfParent - not implicit) to be
empty (as defined by emptyValueDelimiterPolicy) then produce nothing in the infoset. (see note on lengthKind=’delimited’)

b. when the representation is not known in advance to be empty (lengthKind is implicit) then the complex type is parsed.

i. If no processing error occurs, and the representation turns out to have been ES (meaning no data consumed from data stream for the content, but with the initiator and termnator if defined and required by emptyValueDelimiterPolicy), then produce nothing in the infoset. Because there was no processing error, then for occursCountKind='parsed' or 'implicit' or 'stopValue', the array is NOT ended, and for occursCountKind='expression', we decrement the count of how many items we are seeking.

ii. A processing error causes the end of the array for occursCountKind='parsed' or 'implicit'. Otherwise the processing error is cascaded outward for the next enclosing point of uncertainty.

Note on lengthKind=’delimited’

For lengthKind delimited, when we check for nil or for optionality we are checking for current-scope terminating markup, and will not consider any possibility that the complex type of the element recursively re-interprets that markup. It is a schema definition error if the framing in a complex type is ambiguous with the terminating markup of an optional or nillable element.

Round Trip Ambiguities
When unparsing, if a string infoset item happens to contain a string that matches either one of the nilValues, or the default value, it does not matter, the string’s characters are output, or if the value is the empty string, nothing is output. (Along with an initiator or terminator if defined.) This creates an ambiguity where one can unparse an infoset item which is non nil, but when reparsed will produce nil.

These ambiguities are natural. If the nilValue=”nil”, then encountering the characters “nil” in the data stream should parse to produce the value xs:nil. If you unparsed a string infoset item with contents of the characters “nil”, this will be output as the letters “nil”, which on parse will not produce a string with the characters “nil”, but rather the distinguished xs:nil value.

To avoid this issue, one can use validation, along with a pattern that prevents the string from matching any of the nil values.

Similarly, for some formats, when unparsing and there is no infoset item, the unparser may still output a zero-length representation (meaning optional and not present). In this situation, one can unparse an infoset where there is no infoset item, but reparsing that data will create an infoset item with a nil value.

This occurs for a nillable optional recurring element within a separated sequence, when %ES; is the first nilValue, and separatorSuppressionPolicy=”never”. In this situation, separators will be output up to maxOccurs number of separators, with empty values between the separators. On parsing, those empty values will be interpreted as nil, so the recurring element will always have maxOccurs infoset items, some of which will be nil.
6. Authors and Contributors

Stephen M. Hanson,

IBM Software Group,

Hursley,

Winchester,UK

smh@uk.ibm.com
Michael J. Beckerle,

Deloitte,

MA, USA

mbeckerle.dfdl@gmail.com
Tim Kimber,

IBM Software Group,

Hursley,

Winchester,UK

Stephanie Fetzer,

IBM Software Group,

Charlotte, USA

7. Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this recommendation. Please address the information to the OGF Executive Director.

8. Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all warranties, express or implied, including but not limited to any warranty that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

9. Full Copyright Notice

Copyright (C) Open Grid Forum (2011). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the OGF or other organizations, except as needed for the purpose of developing Grid Recommendations in which case the procedures for copyrights defined in the OGF Document process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or assignees.

10. References

[DFDL] DFDL 1.0 http://www.ogf.org/documents/GFD.174.pdf/

[GFD] OGF Document Process and Requirements http://www.ogf.org/documents/GFD.174.pdf/

� That is, the entire element region, not just the content region

� That is, the entire element region, not just the content region

� A complex element may not have nillable ‘true’ and lengthKind ‘implicit’.

� If not ‘none’ then because the element has an empty representation, either an initiator, terminator or both must have been found in the data stream.

�	With the exception of properties that are not permitted on arrays, such as inputValueCalc and outputValueCalc

�Need to decide what dfdl:representationLength() and dfdl:unpaddedLength() return for this.

�Need to decide what dfdl:representationLength() and dfdl:unpaddedLength() return for this.

�We could also decide on whether to add to the Infoset based on minLength facet ?

�I have not updated this. Suggest that Mike has a go at rewriting this based on the sections above.

�For a complex type is emptyValueDelimiterPolicy used to determine when 'empty' really means a particular placeholder?

I'm pretty sure the answer to this is yes. Because empty is a function of the enclosing sequence, not the type of the element.

dfdl-wg@ogf.org

Page 3 of 21

