Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Contents

Goals

  1. NDS Share(d) datasets: present online the below datasets so that users can find and obtain them.  Highlight DOI's of both paper and dataset.
  2. Provide analysis tools along with each dataset (ideally deployable data-side to avoid having to copy the data).

Presentation Logistics

  • Booth demos: NCSA, SDSC, ...
  • SCinet late breaking news talk

Technology

Datasets

1. MHD Turbulence in Core-Collapse Supernovae
Authors: Philipp Moesta (pmoesta@berkeley.edu)
, Christian Ott (cott@tapir.caltech.edu)
Paper URL: http://www.nature.com/nature/journal/v528/n7582/full/nature15755.html
Paper DOI: dx.doi.org/10.1038/nature15755
Data URL: https://go-bluewaters.ncsa.illinois.edu/globus-app/transfer?origin_id=8fc2bb2a-9712-11e5-9991-22000b96db58&origin_path=%2F
Data DOI: ??
Size: 90 TB
Code & Tools: ??

...

In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high-redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at z ~ 25–8, and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function (M1600 -17), but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations, and has a clearly defined lower limit in UV luminosity. This behavior of the luminosity function is due to two factors: (i) the strong dependence of the star formation rate (SFR) on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower SFRs and thus lower UV luminosities; and (ii) the fact that halos with virial masses below ~2 x 10^8 M do not universally contain stars, with the fraction of halos containing stars dropping to zero at ~7 x 10^6 M . Finally, we show that the brightest of our simulated galaxies may be visible to current and future ultra-deep space-based surveys, particularly if lensed regions are chosen for observation.

3. ?? - Matthew Turk can you fill this in?
Authors: ??
Paper URL: ??
Paper DOI: ??
Data URL: ??
Data DOI: ??
Size: ??
Code & Tools: ??
??

Description?

4. ...