Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Added Renaissance Simulations URLs and Size

...

2. Probing the Ultraviolet Luminosity Function of the Earliest Galaxies with the Renaissance Simulations - Christine Kirkpatrick can you fill in the missing pieces?
(Also available on Wrangler?)
Authors: Brian O'Shea (oshea@msu.edu), John Wise, Hao Xu, Michael Norman
Paper URL: http://iopscience.iop.org/article/10.1088/2041-8205/807/1/L12/meta;jsessionid=40CF566DDA56AD74A99FE108F573F445.c1.iopscience.cld.iop.org
Paper DOI: dx.doi.org/10.1088/2041-8205/807/1/L12
Data URL: ?? 

Data DOI: ??
Size:
??89 TB
Code & Tools: ??

In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high-redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at z ~ 25–8, and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function (M1600 -17), but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations, and has a clearly defined lower limit in UV luminosity. This behavior of the luminosity function is due to two factors: (i) the strong dependence of the star formation rate (SFR) on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower SFRs and thus lower UV luminosities; and (ii) the fact that halos with virial masses below ~2 x 10^8 M do not universally contain stars, with the fraction of halos containing stars dropping to zero at ~7 x 10^6 M . Finally, we show that the brightest of our simulated galaxies may be visible to current and future ultra-deep space-based surveys, particularly if lensed regions are chosen for observation.

...