Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

In this paper, we present the first results from the Renaissance Simulations, a suite of extremely high-resolution and physics-rich AMR calculations of high-redshift galaxy formation performed on the Blue Waters supercomputer. These simulations contain hundreds of well-resolved galaxies at z ~ 25–8, and make several novel, testable predictions. Most critically, we show that the ultraviolet luminosity function of our simulated galaxies is consistent with observations of high-z galaxy populations at the bright end of the luminosity function (M1600 -17), but at lower luminosities is essentially flat rather than rising steeply, as has been inferred by Schechter function fits to high-z observations, and has a clearly defined lower limit in UV luminosity. This behavior of the luminosity function is due to two factors: (i) the strong dependence of the star formation rate (SFR) on halo virial mass in our simulated galaxy population, with lower-mass halos having systematically lower SFRs and thus lower UV luminosities; and (ii) the fact that halos with virial masses below ~2 x 10^8 M do not universally contain stars, with the fraction of halos containing stars dropping to zero at ~7 x 10^6 M . Finally, we show that the brightest of our simulated galaxies may be visible to current and future ultra-deep space-based surveys, particularly if lensed regions are chosen for observation.

3. ?? - Matthew Turk can you fill this in?
Authors: ??
Paper URL: ??
Paper DOI: ??
Data URL: ?? Dark Sky Simulation
Authors: Michael Warren, Alexandar Friedland, Daniel Holz, Samuel Skillman, Paul Sutter, Matthew Turk (mjturk@illinois.edu), Risa Wechsler
Paper URL: https://zenodo.org/record/10777#.V_VvKtwcK1M, https://arxiv.org/abs/1407.2600
Paper DOI: http://dx.doi.org/10.5281/zenodo.10777
Data URL: https://girder.hub.yt/api/v1/collection/578501e0c2a5f40001cec1d6/download (https://girder.hub.yt/#collection/578501e0c2a5f40001cec1d6)
Data DOI: ??
Size: ?? 31 TB
Code & Tools: ??
Description?: https://bitbucket.org/darkskysims/darksky_tour/

 

The cosmological N-body simulation designed to provide a quantitative and accessible model of the evolution of the large-scale Universe.

4. ...